Abstract

We report on the implementation of an optical crossbar interconnect consisting of a centralized free-space beam-steering subsystem, a distributed array of vertical-cavity surface-emitting lasers and photoreceivers, a fiber image guide, and a large-core polymer fiber array. The interconnect can in principle handle more than 350 cross-bar channels, but our implementation demonstrated only 240 channels. Transmissions of 500-Mbit/s per channel were demonstrated. Approximately 12.7-dB end-to-end optical channel attenuation was measured. Details of component design, packaging, system integration, and testing are presented and discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, T. Wang, R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
    [CrossRef] [PubMed]
  2. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
    [CrossRef] [PubMed]
  3. Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
    [CrossRef] [PubMed]
  4. Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
    [CrossRef]
  5. Y. Li, T. Wang, “Distribution of light and signals using embedded mirrors inside a polymer optical fiber,” IEEE Photon. Technol. Lett. 8, 1352–1354 (1996).
    [CrossRef]
  6. Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon. Technol. Lett. 8, 1650–1652 (1996).
    [CrossRef]
  7. H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
    [CrossRef]
  8. K. Hamanaka, “Integration of free-space interconnects using Selfoc lenses: image transmission properties,” Jpn. J. Appl. Phys. 31, 1656–1662 (1992).
    [CrossRef]
  9. N. McArdle, M. Ishikawa, “Analysis of GRIN rod and conventional optical systems for imaging of two-dimensional optoelectronic device arrays,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 36–38.
  10. Y. Hayashi, T. Muraihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1234–1236 (1995).
    [CrossRef]
  11. M. Takahashi, P. Vaccaro, K. Fujita, T. Watanabe, T. Muraihara, F. Koyama, K. Iga, “An InGaAs-GaAs vertical-cavity surface-emitting laser grown on GaAs (311)A substrate having low threshold and stable polarization,” IEEE Photon. Technol. Lett. 8, 737–739 (1996).
    [CrossRef]
  12. H. Q. Hou, M. Hagerott-Crawford, R. J. Hickman, B. E. Hammons, “Room-temperature continuous wave operation of all-AlGaAs visible (700 nm) vertical-cavity surface emitting lasers,” Electron. Lett. 32, 1986–1987 (1996).
    [CrossRef]
  13. R. Thornton, Y. Zou, J. Tramontana, M. Crawford, R. P. Schneider, K. D. Choquette, “Visible (670 nm) vertical cavity surface emitting lasers with indium tin oxide transparent conducting top contacts,” in Proceedings of the 1995 IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1995), Vol. 2, pp. 108–109.
    [CrossRef]
  14. I. E. Berman, “Plastic optical fiber flexes its muscle,” Laser Focus World 32(10), 129–132 (1996).

1997

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

1996

Y. Li, T. Wang, “Distribution of light and signals using embedded mirrors inside a polymer optical fiber,” IEEE Photon. Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon. Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

M. Takahashi, P. Vaccaro, K. Fujita, T. Watanabe, T. Muraihara, F. Koyama, K. Iga, “An InGaAs-GaAs vertical-cavity surface-emitting laser grown on GaAs (311)A substrate having low threshold and stable polarization,” IEEE Photon. Technol. Lett. 8, 737–739 (1996).
[CrossRef]

H. Q. Hou, M. Hagerott-Crawford, R. J. Hickman, B. E. Hammons, “Room-temperature continuous wave operation of all-AlGaAs visible (700 nm) vertical-cavity surface emitting lasers,” Electron. Lett. 32, 1986–1987 (1996).
[CrossRef]

I. E. Berman, “Plastic optical fiber flexes its muscle,” Laser Focus World 32(10), 129–132 (1996).

S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
[CrossRef] [PubMed]

Y. Li, T. Wang, R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
[CrossRef] [PubMed]

Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
[CrossRef] [PubMed]

1995

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

Y. Hayashi, T. Muraihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1234–1236 (1995).
[CrossRef]

1992

K. Hamanaka, “Integration of free-space interconnects using Selfoc lenses: image transmission properties,” Jpn. J. Appl. Phys. 31, 1656–1662 (1992).
[CrossRef]

Araki, S.

Berman, I. E.

I. E. Berman, “Plastic optical fiber flexes its muscle,” Laser Focus World 32(10), 129–132 (1996).

Choquette, K. D.

R. Thornton, Y. Zou, J. Tramontana, M. Crawford, R. P. Schneider, K. D. Choquette, “Visible (670 nm) vertical cavity surface emitting lasers with indium tin oxide transparent conducting top contacts,” in Proceedings of the 1995 IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1995), Vol. 2, pp. 108–109.
[CrossRef]

Crawford, M.

R. Thornton, Y. Zou, J. Tramontana, M. Crawford, R. P. Schneider, K. D. Choquette, “Visible (670 nm) vertical cavity surface emitting lasers with indium tin oxide transparent conducting top contacts,” in Proceedings of the 1995 IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1995), Vol. 2, pp. 108–109.
[CrossRef]

Fasanella, K.

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon. Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

Fujita, K.

M. Takahashi, P. Vaccaro, K. Fujita, T. Watanabe, T. Muraihara, F. Koyama, K. Iga, “An InGaAs-GaAs vertical-cavity surface-emitting laser grown on GaAs (311)A substrate having low threshold and stable polarization,” IEEE Photon. Technol. Lett. 8, 737–739 (1996).
[CrossRef]

Hagerott-Crawford, M.

H. Q. Hou, M. Hagerott-Crawford, R. J. Hickman, B. E. Hammons, “Room-temperature continuous wave operation of all-AlGaAs visible (700 nm) vertical-cavity surface emitting lasers,” Electron. Lett. 32, 1986–1987 (1996).
[CrossRef]

Hamanaka, K.

K. Hamanaka, “Integration of free-space interconnects using Selfoc lenses: image transmission properties,” Jpn. J. Appl. Phys. 31, 1656–1662 (1992).
[CrossRef]

Hammons, B. E.

H. Q. Hou, M. Hagerott-Crawford, R. J. Hickman, B. E. Hammons, “Room-temperature continuous wave operation of all-AlGaAs visible (700 nm) vertical-cavity surface emitting lasers,” Electron. Lett. 32, 1986–1987 (1996).
[CrossRef]

Hatori, N.

Y. Hayashi, T. Muraihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1234–1236 (1995).
[CrossRef]

Hayashi, Y.

Y. Hayashi, T. Muraihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1234–1236 (1995).
[CrossRef]

Hickman, R. J.

H. Q. Hou, M. Hagerott-Crawford, R. J. Hickman, B. E. Hammons, “Room-temperature continuous wave operation of all-AlGaAs visible (700 nm) vertical-cavity surface emitting lasers,” Electron. Lett. 32, 1986–1987 (1996).
[CrossRef]

Hou, H. Q.

H. Q. Hou, M. Hagerott-Crawford, R. J. Hickman, B. E. Hammons, “Room-temperature continuous wave operation of all-AlGaAs visible (700 nm) vertical-cavity surface emitting lasers,” Electron. Lett. 32, 1986–1987 (1996).
[CrossRef]

Iga, K.

M. Takahashi, P. Vaccaro, K. Fujita, T. Watanabe, T. Muraihara, F. Koyama, K. Iga, “An InGaAs-GaAs vertical-cavity surface-emitting laser grown on GaAs (311)A substrate having low threshold and stable polarization,” IEEE Photon. Technol. Lett. 8, 737–739 (1996).
[CrossRef]

Y. Hayashi, T. Muraihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1234–1236 (1995).
[CrossRef]

Ishigure, T.

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

Ishikawa, M.

N. McArdle, M. Ishikawa, “Analysis of GRIN rod and conventional optical systems for imaging of two-dimensional optoelectronic device arrays,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 36–38.

Kajita, M.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
[CrossRef] [PubMed]

Kasahara, K.

Kawai, S.

Koike, Y.

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

Kosaka, H.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
[CrossRef] [PubMed]

Koyama, F.

M. Takahashi, P. Vaccaro, K. Fujita, T. Watanabe, T. Muraihara, F. Koyama, K. Iga, “An InGaAs-GaAs vertical-cavity surface-emitting laser grown on GaAs (311)A substrate having low threshold and stable polarization,” IEEE Photon. Technol. Lett. 8, 737–739 (1996).
[CrossRef]

Y. Hayashi, T. Muraihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1234–1236 (1995).
[CrossRef]

Kubota, K.

Kurihara, K.

Li, Y.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
[CrossRef] [PubMed]

Y. Li, T. Wang, “Distribution of light and signals using embedded mirrors inside a polymer optical fiber,” IEEE Photon. Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon. Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

Y. Li, T. Wang, R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
[CrossRef] [PubMed]

Linke, R. A.

Matsutani, A.

Y. Hayashi, T. Muraihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1234–1236 (1995).
[CrossRef]

McArdle, N.

N. McArdle, M. Ishikawa, “Analysis of GRIN rod and conventional optical systems for imaging of two-dimensional optoelectronic device arrays,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 36–38.

Muraihara, T.

M. Takahashi, P. Vaccaro, K. Fujita, T. Watanabe, T. Muraihara, F. Koyama, K. Iga, “An InGaAs-GaAs vertical-cavity surface-emitting laser grown on GaAs (311)A substrate having low threshold and stable polarization,” IEEE Photon. Technol. Lett. 8, 737–739 (1996).
[CrossRef]

Y. Hayashi, T. Muraihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1234–1236 (1995).
[CrossRef]

Nihei, E.

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

Ohnoki, N.

Y. Hayashi, T. Muraihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1234–1236 (1995).
[CrossRef]

Redmond, I.

Schenfeld, E.

Schneider, R. P.

R. Thornton, Y. Zou, J. Tramontana, M. Crawford, R. P. Schneider, K. D. Choquette, “Visible (670 nm) vertical cavity surface emitting lasers with indium tin oxide transparent conducting top contacts,” in Proceedings of the 1995 IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1995), Vol. 2, pp. 108–109.
[CrossRef]

Sugimoto, Y.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Takahashi, M.

M. Takahashi, P. Vaccaro, K. Fujita, T. Watanabe, T. Muraihara, F. Koyama, K. Iga, “An InGaAs-GaAs vertical-cavity surface-emitting laser grown on GaAs (311)A substrate having low threshold and stable polarization,” IEEE Photon. Technol. Lett. 8, 737–739 (1996).
[CrossRef]

Thornton, R.

R. Thornton, Y. Zou, J. Tramontana, M. Crawford, R. P. Schneider, K. D. Choquette, “Visible (670 nm) vertical cavity surface emitting lasers with indium tin oxide transparent conducting top contacts,” in Proceedings of the 1995 IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1995), Vol. 2, pp. 108–109.
[CrossRef]

Tramontana, J.

R. Thornton, Y. Zou, J. Tramontana, M. Crawford, R. P. Schneider, K. D. Choquette, “Visible (670 nm) vertical cavity surface emitting lasers with indium tin oxide transparent conducting top contacts,” in Proceedings of the 1995 IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1995), Vol. 2, pp. 108–109.
[CrossRef]

Vaccaro, P.

M. Takahashi, P. Vaccaro, K. Fujita, T. Watanabe, T. Muraihara, F. Koyama, K. Iga, “An InGaAs-GaAs vertical-cavity surface-emitting laser grown on GaAs (311)A substrate having low threshold and stable polarization,” IEEE Photon. Technol. Lett. 8, 737–739 (1996).
[CrossRef]

Wang, T.

Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
[CrossRef] [PubMed]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon. Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

Y. Li, T. Wang, “Distribution of light and signals using embedded mirrors inside a polymer optical fiber,” IEEE Photon. Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Y. Li, T. Wang, R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
[CrossRef] [PubMed]

Watanabe, T.

M. Takahashi, P. Vaccaro, K. Fujita, T. Watanabe, T. Muraihara, F. Koyama, K. Iga, “An InGaAs-GaAs vertical-cavity surface-emitting laser grown on GaAs (311)A substrate having low threshold and stable polarization,” IEEE Photon. Technol. Lett. 8, 737–739 (1996).
[CrossRef]

Zou, Y.

R. Thornton, Y. Zou, J. Tramontana, M. Crawford, R. P. Schneider, K. D. Choquette, “Visible (670 nm) vertical cavity surface emitting lasers with indium tin oxide transparent conducting top contacts,” in Proceedings of the 1995 IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1995), Vol. 2, pp. 108–109.
[CrossRef]

Appl. Opt.

Electron. Lett.

H. Q. Hou, M. Hagerott-Crawford, R. J. Hickman, B. E. Hammons, “Room-temperature continuous wave operation of all-AlGaAs visible (700 nm) vertical-cavity surface emitting lasers,” Electron. Lett. 32, 1986–1987 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Hayashi, T. Muraihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1234–1236 (1995).
[CrossRef]

M. Takahashi, P. Vaccaro, K. Fujita, T. Watanabe, T. Muraihara, F. Koyama, K. Iga, “An InGaAs-GaAs vertical-cavity surface-emitting laser grown on GaAs (311)A substrate having low threshold and stable polarization,” IEEE Photon. Technol. Lett. 8, 737–739 (1996).
[CrossRef]

Y. Li, T. Wang, “Distribution of light and signals using embedded mirrors inside a polymer optical fiber,” IEEE Photon. Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon. Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

J. Lightwave Technol.

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

Jpn. J. Appl. Phys.

K. Hamanaka, “Integration of free-space interconnects using Selfoc lenses: image transmission properties,” Jpn. J. Appl. Phys. 31, 1656–1662 (1992).
[CrossRef]

Laser Focus World

I. E. Berman, “Plastic optical fiber flexes its muscle,” Laser Focus World 32(10), 129–132 (1996).

Other

N. McArdle, M. Ishikawa, “Analysis of GRIN rod and conventional optical systems for imaging of two-dimensional optoelectronic device arrays,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 36–38.

R. Thornton, Y. Zou, J. Tramontana, M. Crawford, R. P. Schneider, K. D. Choquette, “Visible (670 nm) vertical cavity surface emitting lasers with indium tin oxide transparent conducting top contacts,” in Proceedings of the 1995 IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1995), Vol. 2, pp. 108–109.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the optoelectronic distributed crossbar interconnect.

Fig. 2
Fig. 2

Side view of the free-space subsystem for angle-multiplexed cross-connect operations. I’s, input channels; O’s, output channels; f’s, lens focal lengths; D’s, lens aperture diameters; δx’s, emitting and receiving pixel diameters; Δx’s, channel pitches.

Fig. 3
Fig. 3

Output optical power versus current for the packaged 8 × 8 VCSEL array.

Fig. 4
Fig. 4

Simulated system output spot diagrams arranged as functions of the illumination field angles in the two orthogonal dimensions.

Fig. 5
Fig. 5

(a) Minilens holding plate (240 channels). (b) Geometric parameters of an individual lens holder.

Fig. 6
Fig. 6

Streak-camera-based measurements of the time response of a G-FIG (left) and a P-FIG (right) of 1-m length. The measurement system has a 6-ps-resolution limit.

Fig. 7
Fig. 7

CCD camera images of transmitted 8 × 8 VCSEL emission patterns through a 0.75-m (a) G-FIG (δx 1 = 30 μm, Δx 1 = 90 μm) and (b) P-FIG (δx 1 = 45 μm, Δx 1 = 250 μm).

Fig. 8
Fig. 8

Single-channel end-to-end optical power distribution and receiving eye diagrams of a 500-Mbit/s transmission.

Fig. 9
Fig. 9

Photograph of the system layout of a distributed crossbar interconnect.

Tables (4)

Tables Icon

Table 1 Summary of Key Parameters of Various FIG Samples

Tables Icon

Table 2 Simulated Spot Diameters of the Macrolens (f = 600 mm, F# = 4.03)

Tables Icon

Table 3 Spot Diameters Measured with G-FIG-Based Illumination

Tables Icon

Table 4 Spot Diameters Measured with P-FIG-Based Illumination

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ x 2 = Δ x 1 f 2 f 1 .
δ x 2 = 1.22 λ f 2 D 1 ,

Metrics