Abstract

We model and compare on-chip (up to wafer scale) and off-chip (multichip module) high-speed electrical interconnections with free-space optical interconnections in terms of speed performance and energy requirements for digital transmission in large-scale systems. For all technologies the interconnections are first modeled and optimized for minimum delay as functions of the interconnection length for both one-to-one and fan-out connections. Then energy requirements are derived as functions of the interconnection length. Free-space optical interconnections that use multiple-quantum-well modulators or vertical-cavity surface-emitting lasers as transmitters are shown to offer a speed–energy product advantage as high as 30 over that of the electrical interconnection technologies.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
    [CrossRef]
  2. L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
    [CrossRef]
  3. W. H. Wu, L. A. Bergman, A. R. Johnston, C. C. Guest, “Implementation of optical interconnections for VLSI,” IEEE Trans. Electron. Devices 34, 706–714 (1987).
    [CrossRef]
  4. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical imaging applied to microelectric chip-to-chip interconnections,” Appl. Opt. 24, 2851–2858 (1985).
    [CrossRef] [PubMed]
  5. F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, New York, 1993), Vol. II, pp. 169–250.
  6. F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” Lightwave Technol. 9, 1674–1692 (1991).
    [CrossRef]
  7. A. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, S. H. Lee, “Grain-size study for a 2-D shuffle-exchange optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992).
    [CrossRef] [PubMed]
  8. K. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
    [CrossRef] [PubMed]
  9. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [CrossRef] [PubMed]
  10. G. Yayla, P. Marchand, S. Esener, “Energy requirements and speed analysis of digital electrical and free-space optical interconnections,” in Optical Interconnections and Parallel Processing: The Interface, P. Berthome, A. Ferreira, eds. (Kluwer, Dordrecht, The Netherlands, 1997), Chap. 1.
  11. K. Ayadi, M. Kuijk, P. Heremans, G. Bickel, “A monolithic optoelectronic receiver in standard 0.7-μm CMOS operating at 180 MHz and 176-fJ light input energy,” IEEE Photon. Technol. Lett. 9, 88–90 (1997).
    [CrossRef]
  12. H. J. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits SC-19, 468–474 (1984).
    [CrossRef]
  13. N. C. Li, G. L. Haviland, A. A. Tuszynski, “CMOS tapered buffer,” IEEE J. Solid-State Circuits 25, 1005–1008 (1990).
    [CrossRef]
  14. R. Geiger, P. Allen, N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.
  15. A. L. DeCegama, Parallel Processing Architectures and VLSI Hardware (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  16. T. C. Lee, J. Cong, “The new line in IC design,” IEEE Spectrum 34(3), 52–58 (1997).
  17. H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).
  18. B. Wadell, Transmission Line Design Handbook (Artech House, Boston, 1991).
  19. S. Wolf, Silicon Processing for the VLSI Era: Process Integration, (Lattice, Sunset Beach, Calif., 1990).
  20. S. Wolf, Silicon Processing for the VLSI Era: The Submicron MOSFET (Lattice, Sunset Beach, Calif., 1995).
  21. S. Rosenstark, Transmission Lines in Computer Engineering (McGraw-Hill, New York, 1994).
  22. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1060 (1985).
    [CrossRef]
  23. C. Fan, D. W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 μm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
    [CrossRef]
  24. A. V. Krishnamoorthy, A. Krishnamoorthy, T. K. Woodward, K. W. Goosen, J. A. Walker, “Operation of a single-ended 550 Mbits/sec, 41 fJ, hybrid CMOS/MQW receiver-transmitter,” Electron. Lett. 32, 764–765 (1996).
    [CrossRef]
  25. B. Pezeshki, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Appl. Phys. Lett. 57, 1491–1492 (1990).
    [CrossRef]
  26. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
    [CrossRef]
  27. P. J. Stevens, G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989).
    [CrossRef]
  28. T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
    [CrossRef]
  29. L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE1362, 79–92 (1990).
  30. J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
    [CrossRef]
  31. D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
    [CrossRef]
  32. R. Geels, L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” Appl. Phys. Lett. 57, 1605–1607 (1990).
    [CrossRef]
  33. C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, G. C. Marsden, “A comparison of transmitter technologies for digital free-space optical interconnections,” Appl. Opt. 34, 3103–3115 (1995).
    [CrossRef] [PubMed]
  34. D. A. Van Blerkom, O. Kibar, C. Fan, P. J. Marchand, S. C. Esener, “Power optimization of digital free-space optoelectronic interconnections,” J. Lightwave Technol. (to be published).
  35. D. Van Blerkom, C. Fan, M. Blume, S.C. Esener, “Optimization of smart pixel receivers,” J. Lightwave Technol. (to be published).
  36. A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(4), 55–76 (1996).

1997 (2)

K. Ayadi, M. Kuijk, P. Heremans, G. Bickel, “A monolithic optoelectronic receiver in standard 0.7-μm CMOS operating at 180 MHz and 176-fJ light input energy,” IEEE Photon. Technol. Lett. 9, 88–90 (1997).
[CrossRef]

T. C. Lee, J. Cong, “The new line in IC design,” IEEE Spectrum 34(3), 52–58 (1997).

1996 (2)

A. V. Krishnamoorthy, A. Krishnamoorthy, T. K. Woodward, K. W. Goosen, J. A. Walker, “Operation of a single-ended 550 Mbits/sec, 41 fJ, hybrid CMOS/MQW receiver-transmitter,” Electron. Lett. 32, 764–765 (1996).
[CrossRef]

A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(4), 55–76 (1996).

1995 (1)

1994 (1)

1993 (2)

C. Fan, D. W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 μm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[CrossRef]

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

1992 (1)

1991 (2)

J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

1990 (4)

R. Geels, L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” Appl. Phys. Lett. 57, 1605–1607 (1990).
[CrossRef]

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[CrossRef]

N. C. Li, G. L. Haviland, A. A. Tuszynski, “CMOS tapered buffer,” IEEE J. Solid-State Circuits 25, 1005–1008 (1990).
[CrossRef]

B. Pezeshki, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Appl. Phys. Lett. 57, 1491–1492 (1990).
[CrossRef]

1989 (1)

P. J. Stevens, G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989).
[CrossRef]

1988 (1)

1987 (1)

W. H. Wu, L. A. Bergman, A. R. Johnston, C. C. Guest, “Implementation of optical interconnections for VLSI,” IEEE Trans. Electron. Devices 34, 706–714 (1987).
[CrossRef]

1986 (1)

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

1985 (2)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical imaging applied to microelectric chip-to-chip interconnections,” Appl. Opt. 24, 2851–2858 (1985).
[CrossRef] [PubMed]

1984 (3)

H. J. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits SC-19, 468–474 (1984).
[CrossRef]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Allen, P.

R. Geiger, P. Allen, N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Ayadi, K.

K. Ayadi, M. Kuijk, P. Heremans, G. Bickel, “A monolithic optoelectronic receiver in standard 0.7-μm CMOS operating at 180 MHz and 176-fJ light input energy,” IEEE Photon. Technol. Lett. 9, 88–90 (1997).
[CrossRef]

Bakoglu, H. B.

H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).

Bergman, L. A.

W. H. Wu, L. A. Bergman, A. R. Johnston, C. C. Guest, “Implementation of optical interconnections for VLSI,” IEEE Trans. Electron. Devices 34, 706–714 (1987).
[CrossRef]

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Bickel, G.

K. Ayadi, M. Kuijk, P. Heremans, G. Bickel, “A monolithic optoelectronic receiver in standard 0.7-μm CMOS operating at 180 MHz and 176-fJ light input energy,” IEEE Photon. Technol. Lett. 9, 88–90 (1997).
[CrossRef]

Blume, M.

D. Van Blerkom, C. Fan, M. Blume, S.C. Esener, “Optimization of smart pixel receivers,” J. Lightwave Technol. (to be published).

Burrus, C. A.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

Coldren, L.

R. Geels, L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” Appl. Phys. Lett. 57, 1605–1607 (1990).
[CrossRef]

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE1362, 79–92 (1990).

Coldren, L. A.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Cong, J.

T. C. Lee, J. Cong, “The new line in IC design,” IEEE Spectrum 34(3), 52–58 (1997).

Corzine, S.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE1362, 79–92 (1990).

Corzine, S. W.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

DeCegama, A. L.

A. L. DeCegama, Parallel Processing Architectures and VLSI Hardware (Prentice-Hall, Englewood Cliffs, N.J., 1989).

deMiguel, J. L.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[CrossRef]

Esener, S.

A. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, S. H. Lee, “Grain-size study for a 2-D shuffle-exchange optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992).
[CrossRef] [PubMed]

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

G. Yayla, P. Marchand, S. Esener, “Energy requirements and speed analysis of digital electrical and free-space optical interconnections,” in Optical Interconnections and Parallel Processing: The Interface, P. Berthome, A. Ferreira, eds. (Kluwer, Dordrecht, The Netherlands, 1997), Chap. 1.

Esener, S. C.

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, G. C. Marsden, “A comparison of transmitter technologies for digital free-space optical interconnections,” Appl. Opt. 34, 3103–3115 (1995).
[CrossRef] [PubMed]

C. Fan, D. W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 μm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[CrossRef]

M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
[CrossRef] [PubMed]

D. A. Van Blerkom, O. Kibar, C. Fan, P. J. Marchand, S. C. Esener, “Power optimization of digital free-space optoelectronic interconnections,” J. Lightwave Technol. (to be published).

Esener, S.C.

D. Van Blerkom, C. Fan, M. Blume, S.C. Esener, “Optimization of smart pixel receivers,” J. Lightwave Technol. (to be published).

Fainman, Y.

Fan, C.

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, G. C. Marsden, “A comparison of transmitter technologies for digital free-space optical interconnections,” Appl. Opt. 34, 3103–3115 (1995).
[CrossRef] [PubMed]

C. Fan, D. W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 μm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[CrossRef]

D. Van Blerkom, C. Fan, M. Blume, S.C. Esener, “Optimization of smart pixel receivers,” J. Lightwave Technol. (to be published).

D. A. Van Blerkom, O. Kibar, C. Fan, P. J. Marchand, S. C. Esener, “Power optimization of digital free-space optoelectronic interconnections,” J. Lightwave Technol. (to be published).

Feels, R.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE1362, 79–92 (1990).

Feldman, M. R.

Fonard, A. C.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE1362, 79–92 (1990).

Geels, R.

R. Geels, L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” Appl. Phys. Lett. 57, 1605–1607 (1990).
[CrossRef]

Geiger, R.

R. Geiger, P. Allen, N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.

Goodman, J. W.

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical imaging applied to microelectric chip-to-chip interconnections,” Appl. Opt. 24, 2851–2858 (1985).
[CrossRef] [PubMed]

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Goosen, K. W.

A. V. Krishnamoorthy, A. Krishnamoorthy, T. K. Woodward, K. W. Goosen, J. A. Walker, “Operation of a single-ended 550 Mbits/sec, 41 fJ, hybrid CMOS/MQW receiver-transmitter,” Electron. Lett. 32, 764–765 (1996).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

Guest, C. C.

M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
[CrossRef] [PubMed]

W. H. Wu, L. A. Bergman, A. R. Johnston, C. C. Guest, “Implementation of optical interconnections for VLSI,” IEEE Trans. Electron. Devices 34, 706–714 (1987).
[CrossRef]

Hansen, M. W.

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, G. C. Marsden, “A comparison of transmitter technologies for digital free-space optical interconnections,” Appl. Opt. 34, 3103–3115 (1995).
[CrossRef] [PubMed]

C. Fan, D. W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 μm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[CrossRef]

Harris, J. S.

B. Pezeshki, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Appl. Phys. Lett. 57, 1491–1492 (1990).
[CrossRef]

Haviland, G. L.

N. C. Li, G. L. Haviland, A. A. Tuszynski, “CMOS tapered buffer,” IEEE J. Solid-State Circuits 25, 1005–1008 (1990).
[CrossRef]

Heremans, P.

K. Ayadi, M. Kuijk, P. Heremans, G. Bickel, “A monolithic optoelectronic receiver in standard 0.7-μm CMOS operating at 180 MHz and 176-fJ light input energy,” IEEE Photon. Technol. Lett. 9, 88–90 (1997).
[CrossRef]

Hesselink, L.

Jewell, J.

J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Johnson, B. C.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[CrossRef]

Johnston, A. R.

W. H. Wu, L. A. Bergman, A. R. Johnston, C. C. Guest, “Implementation of optical interconnections for VLSI,” IEEE Trans. Electron. Devices 34, 706–714 (1987).
[CrossRef]

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Kiamilev, F.

A. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, S. H. Lee, “Grain-size study for a 2-D shuffle-exchange optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992).
[CrossRef] [PubMed]

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Kibar, O.

D. A. Van Blerkom, O. Kibar, C. Fan, P. J. Marchand, S. C. Esener, “Power optimization of digital free-space optoelectronic interconnections,” J. Lightwave Technol. (to be published).

Koren, U.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[CrossRef]

Kostuk, R. K.

Krishnamoorthy, A.

A. V. Krishnamoorthy, A. Krishnamoorthy, T. K. Woodward, K. W. Goosen, J. A. Walker, “Operation of a single-ended 550 Mbits/sec, 41 fJ, hybrid CMOS/MQW receiver-transmitter,” Electron. Lett. 32, 764–765 (1996).
[CrossRef]

A. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, S. H. Lee, “Grain-size study for a 2-D shuffle-exchange optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992).
[CrossRef] [PubMed]

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, A. Krishnamoorthy, T. K. Woodward, K. W. Goosen, J. A. Walker, “Operation of a single-ended 550 Mbits/sec, 41 fJ, hybrid CMOS/MQW receiver-transmitter,” Electron. Lett. 32, 764–765 (1996).
[CrossRef]

A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(4), 55–76 (1996).

Kuijk, M.

K. Ayadi, M. Kuijk, P. Heremans, G. Bickel, “A monolithic optoelectronic receiver in standard 0.7-μm CMOS operating at 180 MHz and 176-fJ light input energy,” IEEE Photon. Technol. Lett. 9, 88–90 (1997).
[CrossRef]

Kung, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Law, K. K.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE1362, 79–92 (1990).

Lee, S. H.

Lee, T. C.

T. C. Lee, J. Cong, “The new line in IC design,” IEEE Spectrum 34(3), 52–58 (1997).

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Li, N. C.

N. C. Li, G. L. Haviland, A. A. Tuszynski, “CMOS tapered buffer,” IEEE J. Solid-State Circuits 25, 1005–1008 (1990).
[CrossRef]

Majewski, M. L.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Mansoorian, B.

Marchand, P.

K. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
[CrossRef] [PubMed]

A. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, S. H. Lee, “Grain-size study for a 2-D shuffle-exchange optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992).
[CrossRef] [PubMed]

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

G. Yayla, P. Marchand, S. Esener, “Energy requirements and speed analysis of digital electrical and free-space optical interconnections,” in Optical Interconnections and Parallel Processing: The Interface, P. Berthome, A. Ferreira, eds. (Kluwer, Dordrecht, The Netherlands, 1997), Chap. 1.

Marchand, P. J.

D. A. Van Blerkom, O. Kibar, C. Fan, P. J. Marchand, S. C. Esener, “Power optimization of digital free-space optoelectronic interconnections,” J. Lightwave Technol. (to be published).

Marsden, G. C.

McCormick, F. B.

F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, New York, 1993), Vol. II, pp. 169–250.

Merz, J.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE1362, 79–92 (1990).

Miller, B. I.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[CrossRef]

Miller, D. A. B.

A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(4), 55–76 (1996).

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

Nixon, R.

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Olbright, G.

J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Ozguz, V. H.

Parry, G.

P. J. Stevens, G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989).
[CrossRef]

Pastalan, J. Z.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[CrossRef]

Peters, F. H.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Peters, M. G.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Pezeshki, B.

B. Pezeshki, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Appl. Phys. Lett. 57, 1491–1492 (1990).
[CrossRef]

Rosenstark, S.

S. Rosenstark, Transmission Lines in Computer Engineering (McGraw-Hill, New York, 1994).

Scott, J.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE1362, 79–92 (1990).

Scott, J. W.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Shih, D. W.

C. Fan, D. W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 μm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[CrossRef]

Simes, R.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE1362, 79–92 (1990).

Smith, P. W.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

Stevens, P. J.

P. J. Stevens, G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989).
[CrossRef]

Stroder, N.

R. Geiger, P. Allen, N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.

Thibeault, B. J.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Thomas, D.

B. Pezeshki, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Appl. Phys. Lett. 57, 1491–1492 (1990).
[CrossRef]

Tuszynski, A. A.

N. C. Li, G. L. Haviland, A. A. Tuszynski, “CMOS tapered buffer,” IEEE J. Solid-State Circuits 25, 1005–1008 (1990).
[CrossRef]

Urquhart, K.

Urquhart, K. S.

Van Blerkom, D.

D. Van Blerkom, C. Fan, M. Blume, S.C. Esener, “Optimization of smart pixel receivers,” J. Lightwave Technol. (to be published).

Van Blerkom, D. A.

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, G. C. Marsden, “A comparison of transmitter technologies for digital free-space optical interconnections,” Appl. Opt. 34, 3103–3115 (1995).
[CrossRef] [PubMed]

D. A. Van Blerkom, O. Kibar, C. Fan, P. J. Marchand, S. C. Esener, “Power optimization of digital free-space optoelectronic interconnections,” J. Lightwave Technol. (to be published).

Veendrick, H. J.

H. J. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits SC-19, 468–474 (1984).
[CrossRef]

Wadell, B.

B. Wadell, Transmission Line Design Handbook (Artech House, Boston, 1991).

Walker, J. A.

A. V. Krishnamoorthy, A. Krishnamoorthy, T. K. Woodward, K. W. Goosen, J. A. Walker, “Operation of a single-ended 550 Mbits/sec, 41 fJ, hybrid CMOS/MQW receiver-transmitter,” Electron. Lett. 32, 764–765 (1996).
[CrossRef]

Wieder, H. H.

C. Fan, D. W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 μm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[CrossRef]

Wiegmann, W.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

Wolf, S.

S. Wolf, Silicon Processing for the VLSI Era: The Submicron MOSFET (Lattice, Sunset Beach, Calif., 1995).

S. Wolf, Silicon Processing for the VLSI Era: Process Integration, (Lattice, Sunset Beach, Calif., 1990).

Wood, T. H.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[CrossRef]

Woodward, T. K.

A. V. Krishnamoorthy, A. Krishnamoorthy, T. K. Woodward, K. W. Goosen, J. A. Walker, “Operation of a single-ended 550 Mbits/sec, 41 fJ, hybrid CMOS/MQW receiver-transmitter,” Electron. Lett. 32, 764–765 (1996).
[CrossRef]

Wu, W. H.

W. H. Wu, L. A. Bergman, A. R. Johnston, C. C. Guest, “Implementation of optical interconnections for VLSI,” IEEE Trans. Electron. Devices 34, 706–714 (1987).
[CrossRef]

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Yan, R. H.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE1362, 79–92 (1990).

Yayla, G.

G. Yayla, P. Marchand, S. Esener, “Energy requirements and speed analysis of digital electrical and free-space optical interconnections,” in Optical Interconnections and Parallel Processing: The Interface, P. Berthome, A. Ferreira, eds. (Kluwer, Dordrecht, The Netherlands, 1997), Chap. 1.

Young, D. B.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Young, M. G.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

R. Geels, L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” Appl. Phys. Lett. 57, 1605–1607 (1990).
[CrossRef]

B. Pezeshki, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Appl. Phys. Lett. 57, 1491–1492 (1990).
[CrossRef]

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[CrossRef]

Electron. Lett. (1)

A. V. Krishnamoorthy, A. Krishnamoorthy, T. K. Woodward, K. W. Goosen, J. A. Walker, “Operation of a single-ended 550 Mbits/sec, 41 fJ, hybrid CMOS/MQW receiver-transmitter,” Electron. Lett. 32, 764–765 (1996).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(4), 55–76 (1996).

IEEE J. Solid-State Circuits (2)

H. J. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits SC-19, 468–474 (1984).
[CrossRef]

N. C. Li, G. L. Haviland, A. A. Tuszynski, “CMOS tapered buffer,” IEEE J. Solid-State Circuits 25, 1005–1008 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Ayadi, M. Kuijk, P. Heremans, G. Bickel, “A monolithic optoelectronic receiver in standard 0.7-μm CMOS operating at 180 MHz and 176-fJ light input energy,” IEEE Photon. Technol. Lett. 9, 88–90 (1997).
[CrossRef]

C. Fan, D. W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 μm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[CrossRef]

IEEE Spectrum (1)

T. C. Lee, J. Cong, “The new line in IC design,” IEEE Spectrum 34(3), 52–58 (1997).

IEEE Trans. Electron. Devices (1)

W. H. Wu, L. A. Bergman, A. R. Johnston, C. C. Guest, “Implementation of optical interconnections for VLSI,” IEEE Trans. Electron. Devices 34, 706–714 (1987).
[CrossRef]

J. Lightwave Technol. (1)

P. J. Stevens, G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989).
[CrossRef]

Lightwave Technol. (1)

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Opt. Eng. (1)

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Phys. Rev. B (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

Proc. IEEE (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Other (12)

F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, New York, 1993), Vol. II, pp. 169–250.

D. A. Van Blerkom, O. Kibar, C. Fan, P. J. Marchand, S. C. Esener, “Power optimization of digital free-space optoelectronic interconnections,” J. Lightwave Technol. (to be published).

D. Van Blerkom, C. Fan, M. Blume, S.C. Esener, “Optimization of smart pixel receivers,” J. Lightwave Technol. (to be published).

G. Yayla, P. Marchand, S. Esener, “Energy requirements and speed analysis of digital electrical and free-space optical interconnections,” in Optical Interconnections and Parallel Processing: The Interface, P. Berthome, A. Ferreira, eds. (Kluwer, Dordrecht, The Netherlands, 1997), Chap. 1.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE1362, 79–92 (1990).

H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).

B. Wadell, Transmission Line Design Handbook (Artech House, Boston, 1991).

S. Wolf, Silicon Processing for the VLSI Era: Process Integration, (Lattice, Sunset Beach, Calif., 1990).

S. Wolf, Silicon Processing for the VLSI Era: The Submicron MOSFET (Lattice, Sunset Beach, Calif., 1995).

S. Rosenstark, Transmission Lines in Computer Engineering (McGraw-Hill, New York, 1994).

R. Geiger, P. Allen, N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.

A. L. DeCegama, Parallel Processing Architectures and VLSI Hardware (Prentice-Hall, Englewood Cliffs, N.J., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Definition of interconnection in the context of this paper.

Fig. 2
Fig. 2

Electrical model of an interconnection for the calculation of the energy requirement. An inverter models all the logic devices in the interconnection, and a resistor models all the devices that require steady-state power. C tot is the total interconnection capacitance that is switched during the transmission of a digital bit.

Fig. 3
Fig. 3

Average 4-bit transmission through the channel: (a) NRZ. (b) RZ.

Fig. 4
Fig. 4

Model of an off-chip electrical interconnection.

Fig. 5
Fig. 5

Speed performance and energy requirements of off-chip electrical interconnections as functions of the interconnection length for serial- and parallel-terminated lines in the case of one-to-one connections.

Fig. 6
Fig. 6

Model of an on-chip interconnection.

Fig. 7
Fig. 7

Speed performance and energy requirement of on-chip electrical interconnections as functions of the interconnection length for different loading conditions (no load, 50 fF/mm, 100 fF/mm, and 200 fF/mm): (a) Speed. (b) Energy.

Fig. 8
Fig. 8

Model of interconnection by use of free-space optics. On the transmitter site the interconnection includes a transmitter, a transmitter driver, and a superbuffer in the case for which the transmitter is too large to be driven by minimum logic. The receiver site includes a photodiode with a thresholding current source, clamping diodes to limit the voltage swing, and a minimum-size inverter to amplify the photodiode output signal and restore the logic levels.

Fig. 9
Fig. 9

Speed and energy comparisons between off-chip electrical and MQW-based optical interconnects for one-to-one connections: (a) Speed. (b) Total system energy requirement. (c) Processing plane energy requirement. Curves related to the electrical interconnect are illustrated with symbols. The performance of optical interconnects is illustrated at different detection speeds (t p,det) to permit comparison with electrical interconnects running at the same speed.

Fig. 10
Fig. 10

Speed and energy comparison between wafer-scale electrical and MQW-based optical interconnects for a one-to-one connection: (a) Speed. (b) Total system energy. (c) Processing plane energy. Curves related to electrical interconnect are illustrated with symbols. The performance of the optical interconnects is illustrated at different detection speeds (t p,det) to permit comparison with electrical interconnects running at the same speed.

Fig. 11
Fig. 11

Speed and energy comparison between off-chip electrical and VCSEL-based optical interconnects for a one-to-one connection: (a) Speed. (b) System (processing plane) energy. Curves related to electrical interconnect are illustrated with symbols. The performance of the optical interconnects is illustrated at different detection speeds (t p,det) to permit comparison with electrical interconnects running at the same speed.

Fig. 12
Fig. 12

Speed and energy comparison between wafer-scale electrical and VCSEL-based optical interconnects for a one-to-one connection: (a) Speed. (b) System (processing plane) energy. Curves related to electrical interconnect are illustrated with symbols. The performance of the optical interconnects is illustrated at different detection speeds (t p,det) to permit comparison with electrical interconnects running at the same speed.

Fig. 13
Fig. 13

n-stage superbuffer used to drive large capacitive loads.

Fig. 14
Fig. 14

Photodetector input–output waveforms used in the calculations: (a) the transmitter rise time is less than twice the detector rise time: t r,TRt r,det/2. (b) The transmitter rise time is more than twice the detector rise time: t r,TR < t r,det/2.

Fig. 15
Fig. 15

Plot of Eqs. (B2) and (B4).

Fig. 16
Fig. 16

Geometric assumptions of the optical interconnect scheme.

Fig. 17
Fig. 17

CMOS MQW modulator driver circuit.

Fig. 18
Fig. 18

CMOS VCSEL driver circuit.

Tables (6)

Tables Icon

Table 1 VLSI and Electrical Packaging Constants

Tables Icon

Table 2 Optical Routing and Power Supply Constants

Tables Icon

Table 3 Photodetector Constants

Tables Icon

Table 4 MQW Modulator Technology Constants

Tables Icon

Table 5 VCSEL Constants

Tables Icon

Table 6 Effect of Scaling the VLSI on the Various Interconnection Technologies

Equations (103)

Equations on this page are rendered with MathJax. Learn more.

I c = C tot d v d t .
p c = I c V sup = C tot d v d t   V sup .
E = t   p d t .
E C = C tot V sup 2 .
I sc = 1 12   k eff V sup - 2 V T 3 V sup t r t ,
E sc = 1 12   k eff t r V sup - 2 V T 3 .
E T = E C + E SC + E SS ,
E SS = V sup I H T H + I L T L ,
E nrz / bit = E C 4 + E SC 4 + E SSnrz 4 ,
E SSnrz = 2 V sup T I H + I L .
E rz / bit = E C 2 + E SC 2 + E ssrz 4 ,
E ssrz = V sup T I H + 3 I L .
t r > 5 t f ,
t r < 5 t f .
C L = C dr + L int C int   off + NC rc ,
C dr = C pin + C sb , o ,
C rc = C pin + C min , i ,
C L = C pin + L int C int   off + NC rc 1 - C min , o β C min , i ,
L int = L eff N + 1 ,
L eff = L c + L sp ,
C L N = C pin + L eff C int   off + N L eff C int   off + C rc 1 - C min , o β C min , i .
C L 1 = C pin + L int C int   off + C rc 1 - C min , o β C min , i .
C tot 1 , N = C sb 1 , N + C pin L int C int   off + NC rc .
I H = I L = 0 .
T CLK = t sb , p .
Z 1 = 1 ν C int   off ,
Z N = Z 1 1 + C N C int   off 1 / 2 ,
C N = C rc / L eff .
t f 1 = L int / ν ,
t f N = L int ν 1 + C rc L eff C int   off 1 / 2 .
L int , 1 > t r ν 2.5 ,
L int , N > t r ν 2.5 1 + C rc L eff C int   off 1 / 2 .
R dr 1 , N ser = Z 1 , N .
R dr 1 , N par = R T V DD V H - 1 = Z 1 , N V DD V H - 1 ,
n 1 , N ser , par = 1 ln   β ln R min R dr 1 , N ser , par ,
C tot ser , par 1 , N = C sb ser , par 1 , N + C pin + L int C int   off + NC rc .
I H , par 1 , N = V H Z 1 , N ,     I H , ser 1 , N = 0 ,
I L , ser 1 , N = 0 ,     I L , ser 1 , N = 0 .
T CLK = t sb , p 1 , N + mt f 1 , N ,
N R = 0.4 R int   on C int   on + C N 0.7 R min C min , o 1 / 2 ,
S R = R min C int   on + C N R int   on C min , o 1 / 2 ,
t p , RP = 2.5 R min C int   on + C N R int   on C min , o 1 / 2 .
C R , in = S R C min , i .
C sb , L = C R , in + C sb , o .
k eff = k eff sb + N R S R k min .
C tot = k eff k min C min , i + C min , o + L int C int   on + C N .
t r = R int   on C int   on + 2.3 R min S R C int   on + C N + C R , in + R int   on C R , in .
T CLK = t sbp , on + T p , RP .
C tot = C sb + C TR , i + C TR A TR + NC rc ,
k eff = k eff sb + k dr ,
I H = I TR + I MQW , H + I Load + I RC ,
I L = I TR + I ph , L + I RC ,
T = t sb , p + t dr , p + t p , MQW + t f opt + t p , ph + t p , det + RC min ,
P opt ,   in = DR opt η MQW , H - η MQW , L .
C tot , VCSEL = C sb + C TR , i + C TR A TR + NC rc ,
k eff = k eff sb + k n ,
I H = I TR + I VCSEL , H + I Load + I RC ,
I L = I TR + I th + I ph , L + I RC ,
T = t sb , p + t dr , p + t p , VCSEL + t f opt + t p , ph + t p , det + RC min ,
t sb , p = nRC min α ,
α 1 + p β - 1 ,
p = C min , o C min , i + C min , o ,
n = 1 ln   β ln C L C min , i - 1 ,
t r = 2 RC min α .
C sb , o = β n - 1 C min , o .
C sb = C min , i + C min , o i = 1 n - 1   β i = C min , i + C min , o β   β n - 1 - 1 β - 1 .
k eff = k min i = 1 n - 1   β i = k min β   β n - 1 - 1 β - 1 ,
V DD 2   -   V d 2 V DD 2   -   V d 2 d V = 1 C det t 1 t 2 i 1 t - I L d t + t 2 t 3 i 2 t - I L d t ,
i 1 t = I L + t - t 1 t 2 - t 1 I ph , H - I L , i 2 t = I ph , H - I L ,
I ph , H - I L = 2 V d C det t r , det - t r , TR 4 ,     t r , det t r , TR 2 .
V DD 2   +   V d 2 V DD 2   -   V d 2 d V = 1 C det t 1 t 2 i 3 t - I L d t ,
i 3 t = I L + t - t 1 t 3 - t 1 I ph , H - I L .
I ph , H - I ph , L = 2 V d C det t r , TR t r , det 2 ,     t r , det < t r , TR 2 .
DR I = I ph , H - I ph , L = 2 V d C det t r , det ,
t p , det t r , det 2 .
I RC = k min 2 V DD 2 - V - V T 2 .
I TR = k min 2 V TR 2 - V - V T 2 ,
L opt = 2 L int 2 + L int 2 2 1 / 2 = 2.2 L int ,
t f opt = L opt c ,
η MQW , H = k 0 K m 1 + P i , MQW A MQW I S V H ,   V MQW = V H ,
η MQW , L = k 0 1 + P i , MQW A MQW I S 0 ,     V MQW = V L = 0 ,
P i , MQW A MQW I S V H = 0.2 .
η MQW , H = 0.83 k 0 K m ,
η MQW , L = 0.9 k 0 .
I MQW , H = r MQW P i , MQW η MQW , H ,
k n dc = I MQW , H V TR - V T V d slow - 0.5 V d slow 2 ,
R NMOS = 2 k n ac V TR - V T 2 ,
t r , dr = 2.3 R NMOS C TR ,
C TR = C bond + A MQW C MQW + k n ac k min   C min , o ,
k n ac = C bond + A MQW C MQW 0.5 RC min V TR - V T - C min , o k min .
C TR , i = k dr k min   C min , i ,
P OH = γ D ,
I th = ϕ D ,
P OH = I TR - I th η LI ,     I TR I th ,
P OH = 0 ,     I TR < I th ,
D = P OH γ ,
I th = ϕ γ   P OH ,
I TR = P OH 1 η LI + ϕ γ .
k n = I TR V TR   LAS - V T V L ,
t r = 4 C TR   LAS V H - V L I TR ,
C TR   LAS = C bond + k n k min   C min N , i + A LAS C LAS ,
A LAS = π D .
C TR , i = k n k min   C min N , i .

Metrics