Abstract

The scientific motivation, design criteria, and specifications for a new ground-based instrument to observe the Sun in the He i 1083-nm spectral line is described. The instrument employs a liquid-crystal tunable Lyot-type spectral filter and an array detector that allows the full solar disk to be observed with a time cadence of minutes. We describe the telescope’s optical and mechanical features and discuss computer interface and data-reduction procedures employed. Instrument performance during the initial year of operation of the telescope at its high-altitude site is summarized.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. H. Averett, J. M. Fontenla, R. Loeser, “Formation of the solar 10 830 Å line,” in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, C. Lindsey, eds. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 35–47.
    [CrossRef]
  2. H. P. Jones, “Interpreting recent observations of He i 10 830 Å,” in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, C. Lindsey, eds. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 49–58.
    [CrossRef]
  3. G. A. Kopp, M. J. Derks, D. F. Elmore, D. M. Hassler, J. C. Woods, J. L. Streete, J. G. Blankner, “Tunable liquid crystal filter for solar imaging at He i 1083 nm,” Appl. Opt. 36, 291–296 (1997).
    [CrossRef] [PubMed]
  4. H. A. Hill, R. T. Stebbins, J. R. Oleson, “The finite Fourier transform definition of an edge on the solar disk,” Astrophys. J. 200, 484–498 (1975).
    [CrossRef]
  5. J. R. Kuhn, H. Lin, D. Loranz, “Gain calibrating nonuniform image-array data using only the image data,” Publ. Astron. Soc. Pac. 103, 1097–1108 (1991).
    [CrossRef]
  6. S. R. Walton, G. A. Chapman, A. M. Cookson, J. J. Dobias, D. G. Preminger, “Processing full-disk solar images,” submitted to Sol. Phys.
  7. C. W. Allen, Astrophysical Quantities, 3rd ed. (Athlone, London, 1973), p. 170.

1997 (1)

1991 (1)

J. R. Kuhn, H. Lin, D. Loranz, “Gain calibrating nonuniform image-array data using only the image data,” Publ. Astron. Soc. Pac. 103, 1097–1108 (1991).
[CrossRef]

1975 (1)

H. A. Hill, R. T. Stebbins, J. R. Oleson, “The finite Fourier transform definition of an edge on the solar disk,” Astrophys. J. 200, 484–498 (1975).
[CrossRef]

Allen, C. W.

C. W. Allen, Astrophysical Quantities, 3rd ed. (Athlone, London, 1973), p. 170.

Averett, E. H.

E. H. Averett, J. M. Fontenla, R. Loeser, “Formation of the solar 10 830 Å line,” in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, C. Lindsey, eds. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 35–47.
[CrossRef]

Blankner, J. G.

Chapman, G. A.

S. R. Walton, G. A. Chapman, A. M. Cookson, J. J. Dobias, D. G. Preminger, “Processing full-disk solar images,” submitted to Sol. Phys.

Cookson, A. M.

S. R. Walton, G. A. Chapman, A. M. Cookson, J. J. Dobias, D. G. Preminger, “Processing full-disk solar images,” submitted to Sol. Phys.

Derks, M. J.

Dobias, J. J.

S. R. Walton, G. A. Chapman, A. M. Cookson, J. J. Dobias, D. G. Preminger, “Processing full-disk solar images,” submitted to Sol. Phys.

Elmore, D. F.

Fontenla, J. M.

E. H. Averett, J. M. Fontenla, R. Loeser, “Formation of the solar 10 830 Å line,” in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, C. Lindsey, eds. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 35–47.
[CrossRef]

Hassler, D. M.

Hill, H. A.

H. A. Hill, R. T. Stebbins, J. R. Oleson, “The finite Fourier transform definition of an edge on the solar disk,” Astrophys. J. 200, 484–498 (1975).
[CrossRef]

Jones, H. P.

H. P. Jones, “Interpreting recent observations of He i 10 830 Å,” in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, C. Lindsey, eds. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 49–58.
[CrossRef]

Kopp, G. A.

Kuhn, J. R.

J. R. Kuhn, H. Lin, D. Loranz, “Gain calibrating nonuniform image-array data using only the image data,” Publ. Astron. Soc. Pac. 103, 1097–1108 (1991).
[CrossRef]

Lin, H.

J. R. Kuhn, H. Lin, D. Loranz, “Gain calibrating nonuniform image-array data using only the image data,” Publ. Astron. Soc. Pac. 103, 1097–1108 (1991).
[CrossRef]

Loeser, R.

E. H. Averett, J. M. Fontenla, R. Loeser, “Formation of the solar 10 830 Å line,” in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, C. Lindsey, eds. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 35–47.
[CrossRef]

Loranz, D.

J. R. Kuhn, H. Lin, D. Loranz, “Gain calibrating nonuniform image-array data using only the image data,” Publ. Astron. Soc. Pac. 103, 1097–1108 (1991).
[CrossRef]

Oleson, J. R.

H. A. Hill, R. T. Stebbins, J. R. Oleson, “The finite Fourier transform definition of an edge on the solar disk,” Astrophys. J. 200, 484–498 (1975).
[CrossRef]

Preminger, D. G.

S. R. Walton, G. A. Chapman, A. M. Cookson, J. J. Dobias, D. G. Preminger, “Processing full-disk solar images,” submitted to Sol. Phys.

Stebbins, R. T.

H. A. Hill, R. T. Stebbins, J. R. Oleson, “The finite Fourier transform definition of an edge on the solar disk,” Astrophys. J. 200, 484–498 (1975).
[CrossRef]

Streete, J. L.

Walton, S. R.

S. R. Walton, G. A. Chapman, A. M. Cookson, J. J. Dobias, D. G. Preminger, “Processing full-disk solar images,” submitted to Sol. Phys.

Woods, J. C.

Appl. Opt. (1)

Astrophys. J. (1)

H. A. Hill, R. T. Stebbins, J. R. Oleson, “The finite Fourier transform definition of an edge on the solar disk,” Astrophys. J. 200, 484–498 (1975).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

J. R. Kuhn, H. Lin, D. Loranz, “Gain calibrating nonuniform image-array data using only the image data,” Publ. Astron. Soc. Pac. 103, 1097–1108 (1991).
[CrossRef]

Other (4)

S. R. Walton, G. A. Chapman, A. M. Cookson, J. J. Dobias, D. G. Preminger, “Processing full-disk solar images,” submitted to Sol. Phys.

C. W. Allen, Astrophysical Quantities, 3rd ed. (Athlone, London, 1973), p. 170.

E. H. Averett, J. M. Fontenla, R. Loeser, “Formation of the solar 10 830 Å line,” in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, C. Lindsey, eds. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 35–47.
[CrossRef]

H. P. Jones, “Interpreting recent observations of He i 10 830 Å,” in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, C. Lindsey, eds. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 49–58.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

CHIP optical system. The entire system is mounted upon a temperature-controlled plate and enclosed in an insulated housing.

Fig. 2
Fig. 2

CHIP electronics block diagram.

Fig. 3
Fig. 3

CHIP data-reduction flow chart.

Fig. 4
Fig. 4

Solar disk observed with the CHIP system. The image is the difference of the normalized intensities in the He i line and the nearby continuum (see Section 7).

Fig. 5
Fig. 5

Computed full width at half-maximum of the spatial derivative of the image of the solar limb (at the continuum wavelength) versus focal position for two image positions, 0.5 and 1.5 solar radii. The results indicate that the system’s spatial resolution is 7.5 and 9.5 arc sec at the two positions.

Fig. 6
Fig. 6

Helium emission line spectrum employing the CHIP system, recorded at MLSO by mounting a helium lamp in front of the objective lens superimposed upon a solar spectrum scan employing the CHIP Lyot filter, from the MLSO. The prominent absorption line at 1082.7 nm is due to Si i in the solar photosphere; telluric water-vapor absorption is visible at 1083.2 nm, and the faint He i absorption line is seen between.

Fig. 7
Fig. 7

rms Uncertainty of hourly measured pixel gain versus radius vector for continuum and He i wavelengths after application of the flat-fielding method of Kuhn et al.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I λ θ / I λ 0 = a + b   cos   θ + c 1 - cos   θ   ln 1 + sec   θ ,
a + b + 1 - ln   2 c = 1
I net = I λ He I λ He disk I λ Cont I λ Cont disk

Metrics