Abstract

Broadband antireflection coatings on ZnSe substrates are designed and manufactured in the 3.5–16-μm IR range. The thin-film materials are YF3 and ZnS produced by electron-beam deposition. To reach optimal performances to as great as 16 μm, we performed an accurate determination of complex indices, taking into account dispersion laws and absorption due to water within layers. With this knowledge, designs are optimized and absorption is reduced at 16 μm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, Thin Film Optical Filters, 2nd ed. (Adam Hilger, Bristol, UK, 1986), Chap. 3, p. 131.
  2. R. Jacobsson, J. O. Martensson, “Evaporated inhomogeneous thin films,” Appl. Opt. 5, 29–34 (1966).
    [CrossRef] [PubMed]
  3. R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” in Physics of Thin Films, G. Hass, M. Francombe, R. W. Hoffman, eds. (Academic, New York, 1975), Vol. 8, pp. 51–98.
  4. J. T. Cox, G. Hass, “Antireflection coatings for optical and infrared optical material,” in Physics of Thin Films, G. Hass, R. E. Thun, eds. (Academic, New York, 1964), Vol. 2, pp. 239–304.
  5. P. H. Berning, “Use of equivalent films in the design of infrared multilayer antireflection coatings,” J. Opt. Soc. Am. 52, 431–436 (1961).
    [CrossRef]
  6. H. Sankur, W. H. Southwell, “Broadband gradient-index antireflection coating for ZnSe,” Appl. Opt. 23, 2770–2773 (1984).
    [CrossRef] [PubMed]
  7. W. H. Southwell, “Coating design using very thin high- and low-index layers,” Appl. Opt. 24, 457–460 (1985).
    [CrossRef] [PubMed]
  8. C. Cole, J. W. Bowen, “Synthesis method for visible and infrared broadband spaceflight antireflection coatings,” in Optical Interference Coatings, Vol. 17 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 58–60.
  9. E. Pelletier, M. Klapisch, P. Giacomo, “Synthèse d’empilements de couches minces,” Nouv. Rev. d’Opt. Appl. 2, 247–254 (1971).
    [CrossRef]
  10. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  11. H. R. Dobler, “Infrared coatings,” Appl. Opt. 28, 2698–2701 (1989).
    [CrossRef] [PubMed]
  12. J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
    [CrossRef]
  13. D. Bezuidenhout, K. Clarke, R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
    [CrossRef]

1989

1987

D. Bezuidenhout, K. Clarke, R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

1985

1984

1983

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

1973

1971

E. Pelletier, M. Klapisch, P. Giacomo, “Synthèse d’empilements de couches minces,” Nouv. Rev. d’Opt. Appl. 2, 247–254 (1971).
[CrossRef]

1966

1961

Berning, P. H.

Bezuidenhout, D.

D. Bezuidenhout, K. Clarke, R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

Borgogno, J. P.

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Bowen, J. W.

C. Cole, J. W. Bowen, “Synthesis method for visible and infrared broadband spaceflight antireflection coatings,” in Optical Interference Coatings, Vol. 17 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 58–60.

Clarke, K.

D. Bezuidenhout, K. Clarke, R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

Cole, C.

C. Cole, J. W. Bowen, “Synthesis method for visible and infrared broadband spaceflight antireflection coatings,” in Optical Interference Coatings, Vol. 17 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 58–60.

Cox, J. T.

J. T. Cox, G. Hass, “Antireflection coatings for optical and infrared optical material,” in Physics of Thin Films, G. Hass, R. E. Thun, eds. (Academic, New York, 1964), Vol. 2, pp. 239–304.

Dobler, H. R.

Giacomo, P.

E. Pelletier, M. Klapisch, P. Giacomo, “Synthèse d’empilements de couches minces,” Nouv. Rev. d’Opt. Appl. 2, 247–254 (1971).
[CrossRef]

Hale, G. M.

Hass, G.

J. T. Cox, G. Hass, “Antireflection coatings for optical and infrared optical material,” in Physics of Thin Films, G. Hass, R. E. Thun, eds. (Academic, New York, 1964), Vol. 2, pp. 239–304.

Jacobsson, R.

R. Jacobsson, J. O. Martensson, “Evaporated inhomogeneous thin films,” Appl. Opt. 5, 29–34 (1966).
[CrossRef] [PubMed]

R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” in Physics of Thin Films, G. Hass, M. Francombe, R. W. Hoffman, eds. (Academic, New York, 1975), Vol. 8, pp. 51–98.

Klapisch, M.

E. Pelletier, M. Klapisch, P. Giacomo, “Synthèse d’empilements de couches minces,” Nouv. Rev. d’Opt. Appl. 2, 247–254 (1971).
[CrossRef]

Lazarides, B.

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters, 2nd ed. (Adam Hilger, Bristol, UK, 1986), Chap. 3, p. 131.

Martensson, J. O.

Pelletier, E.

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

E. Pelletier, M. Klapisch, P. Giacomo, “Synthèse d’empilements de couches minces,” Nouv. Rev. d’Opt. Appl. 2, 247–254 (1971).
[CrossRef]

Pretorius, R.

D. Bezuidenhout, K. Clarke, R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

Querry, M. R.

Sankur, H.

Southwell, W. H.

Appl. Opt.

J. Opt. Soc. Am.

Nouv. Rev. d’Opt. Appl.

E. Pelletier, M. Klapisch, P. Giacomo, “Synthèse d’empilements de couches minces,” Nouv. Rev. d’Opt. Appl. 2, 247–254 (1971).
[CrossRef]

Thin Solid Films

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

D. Bezuidenhout, K. Clarke, R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

Other

H. A. Macleod, Thin Film Optical Filters, 2nd ed. (Adam Hilger, Bristol, UK, 1986), Chap. 3, p. 131.

R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” in Physics of Thin Films, G. Hass, M. Francombe, R. W. Hoffman, eds. (Academic, New York, 1975), Vol. 8, pp. 51–98.

J. T. Cox, G. Hass, “Antireflection coatings for optical and infrared optical material,” in Physics of Thin Films, G. Hass, R. E. Thun, eds. (Academic, New York, 1964), Vol. 2, pp. 239–304.

C. Cole, J. W. Bowen, “Synthesis method for visible and infrared broadband spaceflight antireflection coatings,” in Optical Interference Coatings, Vol. 17 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 58–60.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic representation of the IASI instrument. Many optical coatings are required, such as antireflection coatings, beam splitter, and edge filters. Absorption losses at large wavelengths are particularly crucial for system efficiency.

Fig. 2
Fig. 2

Index profiles of broadband antireflection coatings for high-index substrates (n s , substrate; n a , ambient medium; n H , high-index material; n L , low-index material): (Top) gradient index profile; (center) step-index profile; (bottom) alternate index profile calculated with equivalent layers.

Fig. 3
Fig. 3

Calculated reflectance of antireflection design, substrate/1.159H 0.122L 0.612H 0.301L 0.436H 0.525L 0.208H 1.300L/air, n H = 2.25; n L = 1.45; centering wavelength, 5 μm; normal incidence.

Fig. 4
Fig. 4

Refractive index and extinction coefficient of water in the IR region. Values are taken from Ref. 8.

Fig. 5
Fig. 5

Calculated reflectance, transmittance, and absorptance of antireflection design, substrate/1.159H 0.122L 0.612H 0.301L 0.436H 0.525L 0.208H 1.300L/air; n H = 2.25; n L = 1.45 with 10% water inside the layers; centering wavelength, 5 μm; normal incidence.

Fig. 6
Fig. 6

Measured optical properties of Zns/YF3 antireflection design, ZnSe/1.159H 0.122L 0.612H 0.301L 0.436H 0.525B 0.208H 1.300L/air; centering wavelength, 5 μm; normal incidence; substrate temperature, 100 °C.

Fig. 7
Fig. 7

Measured optical properties of a ZnS layer deposited on ZnSe substrate, half-wave at 13-μm wavelength. Substrate temperature, 100 °C.

Fig. 8
Fig. 8

Calculated refractive index and extinction coefficient of ZnS in the IR spectrum.

Fig. 9
Fig. 9

Measured optical properties of a YF3 layer deposited on ZnSe substrate, quarter-wave at 13-μm wavelength. Substrate temperature, 100 °C.

Fig. 10
Fig. 10

Comparison between the measured data of Fig. 9 and the calculated optical properties of an ideal layer of index of 1.45 of equivalent optical thickness.

Fig. 11
Fig. 11

Comparison between the measured data of Fig. 9 and the calculated optical properties of a 1.48 index layer with 12% water inside.

Fig. 12
Fig. 12

Comparison between the measured data of Fig. 9 and the calculated properties after refinement of the optical constants of the layer.

Fig. 13
Fig. 13

Calculated refractive index and extinction coefficient of YF3 in the IR spectrum.

Fig. 14
Fig. 14

Calculated optical properties of the eight-layer antireflection design, substrate/1.159H 0.122L 0.612H 0.301L 0.436H 0.525L 0.208H 1.300L/air, by using the optical constants given in Figs. 8 and 13. Centering wavelength, 5 μm; normal incidence.

Fig. 15
Fig. 15

Calculated optical properties of the seven-layer antireflection design, substrate/1.108H 0.119L 0.631H 0.308L 0.383H 0.569L 0.217H/air, by using the optical constants given in Figs. 8 and 13. Centering wavelength, 5 μm; normal incidence.

Fig. 16
Fig. 16

Measured optical properties of the seven-layer antireflection design, substrate/1.108H 0.119L 0.631H 0.308L 0.383H 0.569L 0.217H/air, normal incidence.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

substrate / 1.159 H   0.122 L   0.612 H   0.301 L   0.436 H   0.525 L   0.208 H   1.300 L / air ,
N = 1 - α N YF 3 + α N water ,
substrate / 1.108 H   0.119 L   0.631 H   0.308 L   0.383 H   0.569 L   0.217 H / air .

Metrics