Abstract

A trough reflector with a reflective, truncated elliptical surface was designed to efficiently collect freely propagating light from a linear source. The source was placed at one focus of the reflector, and light was collected through a rectangular aperture near the second focus. Collection efficiency was much greater than that of a spherical integrator and ≈6.5× greater than that of an objective lens; as much as ≈55% of the light could be captured from the full aperture. This reflector could be used to efficiently collect surface fluorescence excited by use of evanescent waves in fluorescence-based fiber optic or capillary waveguide sensors.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Glass, S. Lackie, T. Hirschfeld, “Effect of numerical aperture on signal level in cylindrical waveguide evanescent fluorosensors,” Appl. Opt. 26, 2181–2187 (1987).
    [CrossRef] [PubMed]
  2. J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
    [CrossRef]
  3. H. P. Kao, J. S. Schoeniger, “Hollow cylindrical waveguides for use as evanescent fluorescence-based sensors: effect of numerical aperture on collected signal,” Appl. Opt. 36, 8199–8205 (1997).
    [CrossRef]
  4. B. H. Weigl, O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem. 66, 3323–3327 (1994).
    [CrossRef]
  5. O. S. Wolfbeis, “Capillary waveguide sensors,” Trends Anal. Chem. 15, 225–232 (1996).
    [CrossRef]
  6. V. L. Ratner, “Calculation of the angular distribution and waveguide capture efficiency of light emitted by a fluorophore situated at or adsorbed to the waveguide side wall,” Sensors Actuators B 17, 113–119 (1994).
    [CrossRef]
  7. J. M. Murray, D. Eschel, “Evanescent-wave microscopy: a simple optical configuration,” J. Microsc. 167, 49–62 (1992).
    [CrossRef]
  8. J. P. Golden, E. W. Saaski, L. C. Shriverlake, G. P. Anderson, F. S. Ligler, “Portable multichannel fiber optic biosensor for field detection,” Opt. Eng. 36, 1008–1013 (1997).
    [CrossRef]
  9. J. P. Golden, L. C. Shriverlake, G. P. Anderson, R. B. Thompson, F. S. Ligler, “Fluorometer and tapered fiber optic probes for sensing in the evanescent wave,” Opt. Eng. 31, 1458–1462 (1992).
    [CrossRef]
  10. S. L. Pentoney, J. V. Sweedler, Handbook of Capillary Electrophoresis, 2nd ed., J. P. Landers, ed. (CRC, Boca Raton, Fla., 1997), Chap. 12.
  11. J. W. Downs, “Ellipsoidal reflector concentration of energy system,” U.S. patent4,754,381 (28June1988).
  12. F. P. Schafer, in Dye Lasers, 2nd ed., F. P. Schafer, ed., Vol. 1 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), p. 60.
  13. J. D. Griffith, “System for illuminating a linear zone which reduces the effect of light retroflected from outside the zone on the illumination,” U.S. patent5,179,413 (assigned to Eastman Kodak Company, Rochester, N.Y., 12January1993).
  14. Y. Fuse, T. Naganuma, A. Fujimori, K. Arai, K. Igarashi, Y. Naito, “Curing apparatus,” U.S. patent4,591,724 (assigned to Japan Synthetic Rubber Company, Ltd., Tokyo, Japan, 27May1986).

1997 (2)

J. P. Golden, E. W. Saaski, L. C. Shriverlake, G. P. Anderson, F. S. Ligler, “Portable multichannel fiber optic biosensor for field detection,” Opt. Eng. 36, 1008–1013 (1997).
[CrossRef]

H. P. Kao, J. S. Schoeniger, “Hollow cylindrical waveguides for use as evanescent fluorescence-based sensors: effect of numerical aperture on collected signal,” Appl. Opt. 36, 8199–8205 (1997).
[CrossRef]

1996 (1)

O. S. Wolfbeis, “Capillary waveguide sensors,” Trends Anal. Chem. 15, 225–232 (1996).
[CrossRef]

1994 (2)

V. L. Ratner, “Calculation of the angular distribution and waveguide capture efficiency of light emitted by a fluorophore situated at or adsorbed to the waveguide side wall,” Sensors Actuators B 17, 113–119 (1994).
[CrossRef]

B. H. Weigl, O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem. 66, 3323–3327 (1994).
[CrossRef]

1992 (2)

J. M. Murray, D. Eschel, “Evanescent-wave microscopy: a simple optical configuration,” J. Microsc. 167, 49–62 (1992).
[CrossRef]

J. P. Golden, L. C. Shriverlake, G. P. Anderson, R. B. Thompson, F. S. Ligler, “Fluorometer and tapered fiber optic probes for sensing in the evanescent wave,” Opt. Eng. 31, 1458–1462 (1992).
[CrossRef]

1987 (1)

1985 (1)

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

Anderson, G. P.

J. P. Golden, E. W. Saaski, L. C. Shriverlake, G. P. Anderson, F. S. Ligler, “Portable multichannel fiber optic biosensor for field detection,” Opt. Eng. 36, 1008–1013 (1997).
[CrossRef]

J. P. Golden, L. C. Shriverlake, G. P. Anderson, R. B. Thompson, F. S. Ligler, “Fluorometer and tapered fiber optic probes for sensing in the evanescent wave,” Opt. Eng. 31, 1458–1462 (1992).
[CrossRef]

Andrade, J. D.

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

Arai, K.

Y. Fuse, T. Naganuma, A. Fujimori, K. Arai, K. Igarashi, Y. Naito, “Curing apparatus,” U.S. patent4,591,724 (assigned to Japan Synthetic Rubber Company, Ltd., Tokyo, Japan, 27May1986).

Downs, J. W.

J. W. Downs, “Ellipsoidal reflector concentration of energy system,” U.S. patent4,754,381 (28June1988).

Eschel, D.

J. M. Murray, D. Eschel, “Evanescent-wave microscopy: a simple optical configuration,” J. Microsc. 167, 49–62 (1992).
[CrossRef]

Fujimori, A.

Y. Fuse, T. Naganuma, A. Fujimori, K. Arai, K. Igarashi, Y. Naito, “Curing apparatus,” U.S. patent4,591,724 (assigned to Japan Synthetic Rubber Company, Ltd., Tokyo, Japan, 27May1986).

Fuse, Y.

Y. Fuse, T. Naganuma, A. Fujimori, K. Arai, K. Igarashi, Y. Naito, “Curing apparatus,” U.S. patent4,591,724 (assigned to Japan Synthetic Rubber Company, Ltd., Tokyo, Japan, 27May1986).

Glass, T. R.

Golden, J. P.

J. P. Golden, E. W. Saaski, L. C. Shriverlake, G. P. Anderson, F. S. Ligler, “Portable multichannel fiber optic biosensor for field detection,” Opt. Eng. 36, 1008–1013 (1997).
[CrossRef]

J. P. Golden, L. C. Shriverlake, G. P. Anderson, R. B. Thompson, F. S. Ligler, “Fluorometer and tapered fiber optic probes for sensing in the evanescent wave,” Opt. Eng. 31, 1458–1462 (1992).
[CrossRef]

Gregonis, D. E.

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

Griffith, J. D.

J. D. Griffith, “System for illuminating a linear zone which reduces the effect of light retroflected from outside the zone on the illumination,” U.S. patent5,179,413 (assigned to Eastman Kodak Company, Rochester, N.Y., 12January1993).

Hirschfeld, T.

Igarashi, K.

Y. Fuse, T. Naganuma, A. Fujimori, K. Arai, K. Igarashi, Y. Naito, “Curing apparatus,” U.S. patent4,591,724 (assigned to Japan Synthetic Rubber Company, Ltd., Tokyo, Japan, 27May1986).

Kao, H. P.

Lackie, S.

Ligler, F. S.

J. P. Golden, E. W. Saaski, L. C. Shriverlake, G. P. Anderson, F. S. Ligler, “Portable multichannel fiber optic biosensor for field detection,” Opt. Eng. 36, 1008–1013 (1997).
[CrossRef]

J. P. Golden, L. C. Shriverlake, G. P. Anderson, R. B. Thompson, F. S. Ligler, “Fluorometer and tapered fiber optic probes for sensing in the evanescent wave,” Opt. Eng. 31, 1458–1462 (1992).
[CrossRef]

Lin, J. N.

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

Murray, J. M.

J. M. Murray, D. Eschel, “Evanescent-wave microscopy: a simple optical configuration,” J. Microsc. 167, 49–62 (1992).
[CrossRef]

Naganuma, T.

Y. Fuse, T. Naganuma, A. Fujimori, K. Arai, K. Igarashi, Y. Naito, “Curing apparatus,” U.S. patent4,591,724 (assigned to Japan Synthetic Rubber Company, Ltd., Tokyo, Japan, 27May1986).

Naito, Y.

Y. Fuse, T. Naganuma, A. Fujimori, K. Arai, K. Igarashi, Y. Naito, “Curing apparatus,” U.S. patent4,591,724 (assigned to Japan Synthetic Rubber Company, Ltd., Tokyo, Japan, 27May1986).

Newby, K.

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

Pentoney, S. L.

S. L. Pentoney, J. V. Sweedler, Handbook of Capillary Electrophoresis, 2nd ed., J. P. Landers, ed. (CRC, Boca Raton, Fla., 1997), Chap. 12.

Ratner, V. L.

V. L. Ratner, “Calculation of the angular distribution and waveguide capture efficiency of light emitted by a fluorophore situated at or adsorbed to the waveguide side wall,” Sensors Actuators B 17, 113–119 (1994).
[CrossRef]

Saaski, E. W.

J. P. Golden, E. W. Saaski, L. C. Shriverlake, G. P. Anderson, F. S. Ligler, “Portable multichannel fiber optic biosensor for field detection,” Opt. Eng. 36, 1008–1013 (1997).
[CrossRef]

Schafer, F. P.

F. P. Schafer, in Dye Lasers, 2nd ed., F. P. Schafer, ed., Vol. 1 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), p. 60.

Schoeniger, J. S.

Shriverlake, L. C.

J. P. Golden, E. W. Saaski, L. C. Shriverlake, G. P. Anderson, F. S. Ligler, “Portable multichannel fiber optic biosensor for field detection,” Opt. Eng. 36, 1008–1013 (1997).
[CrossRef]

J. P. Golden, L. C. Shriverlake, G. P. Anderson, R. B. Thompson, F. S. Ligler, “Fluorometer and tapered fiber optic probes for sensing in the evanescent wave,” Opt. Eng. 31, 1458–1462 (1992).
[CrossRef]

Sweedler, J. V.

S. L. Pentoney, J. V. Sweedler, Handbook of Capillary Electrophoresis, 2nd ed., J. P. Landers, ed. (CRC, Boca Raton, Fla., 1997), Chap. 12.

Thompson, R. B.

J. P. Golden, L. C. Shriverlake, G. P. Anderson, R. B. Thompson, F. S. Ligler, “Fluorometer and tapered fiber optic probes for sensing in the evanescent wave,” Opt. Eng. 31, 1458–1462 (1992).
[CrossRef]

Van Wagenan, R. A.

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

Weigl, B. H.

B. H. Weigl, O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem. 66, 3323–3327 (1994).
[CrossRef]

Wolfbeis, O. S.

O. S. Wolfbeis, “Capillary waveguide sensors,” Trends Anal. Chem. 15, 225–232 (1996).
[CrossRef]

B. H. Weigl, O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem. 66, 3323–3327 (1994).
[CrossRef]

Anal. Chem. (1)

B. H. Weigl, O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem. 66, 3323–3327 (1994).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Electron Devices (1)

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

J. Microsc. (1)

J. M. Murray, D. Eschel, “Evanescent-wave microscopy: a simple optical configuration,” J. Microsc. 167, 49–62 (1992).
[CrossRef]

Opt. Eng. (2)

J. P. Golden, E. W. Saaski, L. C. Shriverlake, G. P. Anderson, F. S. Ligler, “Portable multichannel fiber optic biosensor for field detection,” Opt. Eng. 36, 1008–1013 (1997).
[CrossRef]

J. P. Golden, L. C. Shriverlake, G. P. Anderson, R. B. Thompson, F. S. Ligler, “Fluorometer and tapered fiber optic probes for sensing in the evanescent wave,” Opt. Eng. 31, 1458–1462 (1992).
[CrossRef]

Sensors Actuators B (1)

V. L. Ratner, “Calculation of the angular distribution and waveguide capture efficiency of light emitted by a fluorophore situated at or adsorbed to the waveguide side wall,” Sensors Actuators B 17, 113–119 (1994).
[CrossRef]

Trends Anal. Chem. (1)

O. S. Wolfbeis, “Capillary waveguide sensors,” Trends Anal. Chem. 15, 225–232 (1996).
[CrossRef]

Other (5)

S. L. Pentoney, J. V. Sweedler, Handbook of Capillary Electrophoresis, 2nd ed., J. P. Landers, ed. (CRC, Boca Raton, Fla., 1997), Chap. 12.

J. W. Downs, “Ellipsoidal reflector concentration of energy system,” U.S. patent4,754,381 (28June1988).

F. P. Schafer, in Dye Lasers, 2nd ed., F. P. Schafer, ed., Vol. 1 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), p. 60.

J. D. Griffith, “System for illuminating a linear zone which reduces the effect of light retroflected from outside the zone on the illumination,” U.S. patent5,179,413 (assigned to Eastman Kodak Company, Rochester, N.Y., 12January1993).

Y. Fuse, T. Naganuma, A. Fujimori, K. Arai, K. Igarashi, Y. Naito, “Curing apparatus,” U.S. patent4,591,724 (assigned to Japan Synthetic Rubber Company, Ltd., Tokyo, Japan, 27May1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Elliptical tube reflector: A, structure of the reflector; B, ray paths of light from a linear source as viewed through a perpendicular cross section of the reflector.

Fig. 2
Fig. 2

Schematic of the optical setup for measurement of the reflector efficiency and the preparation of a capillary waveguide as a Lambertian linear source.

Fig. 3
Fig. 3

Comparison of the light collection of the elliptical reflectors and of the spherical integrator relative to the capillary alone. Data are the mean ± sample standard deviation of measurements from three distinct positions on a single length of capillary. Measurements obtained from the 100-mm-length of capillary within the spherical integrator were normalized to the field of view of the objective. The data point for the 20× objective and the spherical integrator is smaller than can be shown in the figure.

Fig. 4
Fig. 4

Comparison of the total percentage of the collected power by the elliptical reflector under different conditions. We calculated by dividing the percentages the gains shown in Fig. 3 by the maximum possible gain. The maximum possible gain was calculated as θ/π, where θ = sin-1 (objective NA/n quartz), and n quartz = 1 46.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E = fraction   of   light   emitted   into   AOB R + fraction   of   light   emitted   into   AA   and   BB R 3 ,

Metrics