Abstract

A novel technique of using a 1 × N star fiber optic coupler as a distributed strain sensor in a white-light interferometer to measure the distribution of strain is presented. The measuring principle and 1 × 4 star coupler with four fiber optic strain sensors are demonstrated. The experiment is performed with four sensors attached to a combination plastic specimen.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilising low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
    [CrossRef]
  2. C. E. Lee, H. F. Taylor, “Fiber-optic Fabry–Perot temperature sensor using a low coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
    [CrossRef]
  3. Y. N. Ning, K. T. V. Grattan, A. W. Palmer, “Fiber-optic interferometric system using low coherence light source,” Sensors Actuators A 30, 181–192 (1992).
    [CrossRef]
  4. B. R. Fogg, A. Wang, Fiber Optic Sensor-Based Smart Materials and Structures (Institute of Physics, Bristol, UK, 1992), p. 51.
  5. L. Yuan, “White-light interferometric fiber-optic strain sensor from three-peak-wavelengths broadband LED source,” Appl. Opt. 36, 6246–6250 (1997).
    [CrossRef]
  6. Y. J. Rao, D. A. Jackson, “Long-distance fiber-optic white-light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–311 (1995).
    [CrossRef]
  7. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, J. A. Greene, “Optical fiber based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–62 (1996).
    [CrossRef]
  8. L. Yuan, F. Ansari, “White-light interferometric fiber-optic distributed strain-sensing system,” Sensors Actuators A 63, 177–181 (1997).
    [CrossRef]
  9. A. Koch, R. Ulrich, “Fiber-optic displacement sensor with 0.02 μm resolution by white-light interferometry,” Sensors Actuators A 57, 25–27 (1991).
  10. T. Li, A. Wang, K. Murphy, R. Claus, “White-light scanning fiber Michelson interferometer for absolute position-distance measurement,” Opt. Lett. 20, 785–787 (1995).
    [CrossRef] [PubMed]
  11. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 246.
  12. C. D. Butter, G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt. 17, 2867–2869 (1978).
    [CrossRef] [PubMed]
  13. D. A. Pinnow, “Elastooptical materials,” in Handbook of Lasers, R. J. Pressley, ed. (CRC Press, Cleveland, Ohio, 1971), pp. 116–129.
  14. M. P. Roe, B. Wacogne, C. N. Pannell, “High-efficiency all-fiber phase modulator using an annular zinc oxide piezoelectric transducer,” IEEE Photon. Technol. Lett. 8, 1026–1028 (1996).
    [CrossRef]

1997

L. Yuan, F. Ansari, “White-light interferometric fiber-optic distributed strain-sensing system,” Sensors Actuators A 63, 177–181 (1997).
[CrossRef]

L. Yuan, “White-light interferometric fiber-optic strain sensor from three-peak-wavelengths broadband LED source,” Appl. Opt. 36, 6246–6250 (1997).
[CrossRef]

1996

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, J. A. Greene, “Optical fiber based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–62 (1996).
[CrossRef]

M. P. Roe, B. Wacogne, C. N. Pannell, “High-efficiency all-fiber phase modulator using an annular zinc oxide piezoelectric transducer,” IEEE Photon. Technol. Lett. 8, 1026–1028 (1996).
[CrossRef]

1995

T. Li, A. Wang, K. Murphy, R. Claus, “White-light scanning fiber Michelson interferometer for absolute position-distance measurement,” Opt. Lett. 20, 785–787 (1995).
[CrossRef] [PubMed]

Y. J. Rao, D. A. Jackson, “Long-distance fiber-optic white-light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–311 (1995).
[CrossRef]

1992

Y. N. Ning, K. T. V. Grattan, A. W. Palmer, “Fiber-optic interferometric system using low coherence light source,” Sensors Actuators A 30, 181–192 (1992).
[CrossRef]

1991

C. E. Lee, H. F. Taylor, “Fiber-optic Fabry–Perot temperature sensor using a low coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

A. Koch, R. Ulrich, “Fiber-optic displacement sensor with 0.02 μm resolution by white-light interferometry,” Sensors Actuators A 57, 25–27 (1991).

1988

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilising low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

1978

Ansari, F.

L. Yuan, F. Ansari, “White-light interferometric fiber-optic distributed strain-sensing system,” Sensors Actuators A 63, 177–181 (1997).
[CrossRef]

Bhatia, V.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, J. A. Greene, “Optical fiber based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–62 (1996).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 246.

Butter, C. D.

Claus, R.

Claus, R. O.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, J. A. Greene, “Optical fiber based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–62 (1996).
[CrossRef]

Farahi, F.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilising low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Fogg, B. R.

B. R. Fogg, A. Wang, Fiber Optic Sensor-Based Smart Materials and Structures (Institute of Physics, Bristol, UK, 1992), p. 51.

Gerges, A. S.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilising low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Grace, J. L.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, J. A. Greene, “Optical fiber based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–62 (1996).
[CrossRef]

Grattan, K. T. V.

Y. N. Ning, K. T. V. Grattan, A. W. Palmer, “Fiber-optic interferometric system using low coherence light source,” Sensors Actuators A 30, 181–192 (1992).
[CrossRef]

Greene, J. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, J. A. Greene, “Optical fiber based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–62 (1996).
[CrossRef]

Hocker, G. B.

Jackson, D. A.

Y. J. Rao, D. A. Jackson, “Long-distance fiber-optic white-light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–311 (1995).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilising low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Jones, J. D. C.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilising low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Jones, M. E.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, J. A. Greene, “Optical fiber based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–62 (1996).
[CrossRef]

Koch, A.

A. Koch, R. Ulrich, “Fiber-optic displacement sensor with 0.02 μm resolution by white-light interferometry,” Sensors Actuators A 57, 25–27 (1991).

Lee, C. E.

C. E. Lee, H. F. Taylor, “Fiber-optic Fabry–Perot temperature sensor using a low coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

Li, T.

Murphy, K.

Murphy, K. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, J. A. Greene, “Optical fiber based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–62 (1996).
[CrossRef]

Newson, T. P.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilising low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Ning, Y. N.

Y. N. Ning, K. T. V. Grattan, A. W. Palmer, “Fiber-optic interferometric system using low coherence light source,” Sensors Actuators A 30, 181–192 (1992).
[CrossRef]

Palmer, A. W.

Y. N. Ning, K. T. V. Grattan, A. W. Palmer, “Fiber-optic interferometric system using low coherence light source,” Sensors Actuators A 30, 181–192 (1992).
[CrossRef]

Pannell, C. N.

M. P. Roe, B. Wacogne, C. N. Pannell, “High-efficiency all-fiber phase modulator using an annular zinc oxide piezoelectric transducer,” IEEE Photon. Technol. Lett. 8, 1026–1028 (1996).
[CrossRef]

Pinnow, D. A.

D. A. Pinnow, “Elastooptical materials,” in Handbook of Lasers, R. J. Pressley, ed. (CRC Press, Cleveland, Ohio, 1971), pp. 116–129.

Rao, Y. J.

Y. J. Rao, D. A. Jackson, “Long-distance fiber-optic white-light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–311 (1995).
[CrossRef]

Roe, M. P.

M. P. Roe, B. Wacogne, C. N. Pannell, “High-efficiency all-fiber phase modulator using an annular zinc oxide piezoelectric transducer,” IEEE Photon. Technol. Lett. 8, 1026–1028 (1996).
[CrossRef]

Taylor, H. F.

C. E. Lee, H. F. Taylor, “Fiber-optic Fabry–Perot temperature sensor using a low coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

Tran, T. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, J. A. Greene, “Optical fiber based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–62 (1996).
[CrossRef]

Ulrich, R.

A. Koch, R. Ulrich, “Fiber-optic displacement sensor with 0.02 μm resolution by white-light interferometry,” Sensors Actuators A 57, 25–27 (1991).

Wacogne, B.

M. P. Roe, B. Wacogne, C. N. Pannell, “High-efficiency all-fiber phase modulator using an annular zinc oxide piezoelectric transducer,” IEEE Photon. Technol. Lett. 8, 1026–1028 (1996).
[CrossRef]

Wang, A.

T. Li, A. Wang, K. Murphy, R. Claus, “White-light scanning fiber Michelson interferometer for absolute position-distance measurement,” Opt. Lett. 20, 785–787 (1995).
[CrossRef] [PubMed]

B. R. Fogg, A. Wang, Fiber Optic Sensor-Based Smart Materials and Structures (Institute of Physics, Bristol, UK, 1992), p. 51.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 246.

Yuan, L.

L. Yuan, “White-light interferometric fiber-optic strain sensor from three-peak-wavelengths broadband LED source,” Appl. Opt. 36, 6246–6250 (1997).
[CrossRef]

L. Yuan, F. Ansari, “White-light interferometric fiber-optic distributed strain-sensing system,” Sensors Actuators A 63, 177–181 (1997).
[CrossRef]

Appl. Opt.

Electron. Lett.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilising low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Y. J. Rao, D. A. Jackson, “Long-distance fiber-optic white-light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–311 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

M. P. Roe, B. Wacogne, C. N. Pannell, “High-efficiency all-fiber phase modulator using an annular zinc oxide piezoelectric transducer,” IEEE Photon. Technol. Lett. 8, 1026–1028 (1996).
[CrossRef]

J. Lightwave Technol.

C. E. Lee, H. F. Taylor, “Fiber-optic Fabry–Perot temperature sensor using a low coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

Meas. Sci. Technol.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, J. A. Greene, “Optical fiber based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–62 (1996).
[CrossRef]

Opt. Lett.

Sensors Actuators A

L. Yuan, F. Ansari, “White-light interferometric fiber-optic distributed strain-sensing system,” Sensors Actuators A 63, 177–181 (1997).
[CrossRef]

A. Koch, R. Ulrich, “Fiber-optic displacement sensor with 0.02 μm resolution by white-light interferometry,” Sensors Actuators A 57, 25–27 (1991).

Y. N. Ning, K. T. V. Grattan, A. W. Palmer, “Fiber-optic interferometric system using low coherence light source,” Sensors Actuators A 30, 181–192 (1992).
[CrossRef]

Other

B. R. Fogg, A. Wang, Fiber Optic Sensor-Based Smart Materials and Structures (Institute of Physics, Bristol, UK, 1992), p. 51.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 246.

D. A. Pinnow, “Elastooptical materials,” in Handbook of Lasers, R. J. Pressley, ed. (CRC Press, Cleveland, Ohio, 1971), pp. 116–129.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Distribution fiber optic strain-sensing system: PIN, detector; FC’s, fiber connector.

Fig. 2
Fig. 2

Measuring principle of the fiber-optic distribution sensing system.

Fig. 3
Fig. 3

Two principal methods for embedding fiber optic sensors.

Fig. 4
Fig. 4

Typical single-mode fiber GRIN lens collimator insertion losses versus separation distance.

Fig. 5
Fig. 5

Three-layer combination plastic strain-testing specimen.

Fig. 6
Fig. 6

Two fiber optic strain sensors identical attached at one point and with the same amount of stress applied to each sensor.

Fig. 7
Fig. 7

Test results for various fiber optic strain sensors and strain gauges with various amounts of resistence.

Tables (1)

Tables Icon

Table 1 Parameters of the Experimental System

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I x = I mean 1 + exp - ξ 2 2 L c 2   x 2 cos 2 π λ 0   x ,
l 1 < l 2 < < l N
n eff l i + 1 - l i min > n eff ε max l i + 1 + L c ,     i = 1 ,   2 , ,   N - 1
n eff l N - l 1 max < D ,
P T i = P 0 2   δ c α s T i ,     i = 1 ,   2 , ,   N ,
δ c = P output P input ,
α s = i N   P i output P input ,
T i = P i output j N   P j output ,     i = 1 ,   2 , ,   N .
T i = 1 N ,     i = 1 ,   2 , ,   N .
P R i = P 0 δ c α s T i 2 2   R i = P 0 δ c α s 2 N 2   R i ,   i = 1 ,   2 , ,   N .
P s = P 0 δ c 2 2   η d R s ,
η d = A 1 + ξ d / r 0 3 / 2 2 ,
Δ x = n Δ l ε + Δ n ε l ,
Δ l ε = l ε .
Δ n = - 1 / 2 n 3 1 - μ p 12 - μ p 11 ε .
Δ x = nl ε - 1 / 2 n 3 1 - μ p 12 - μ p 11 l ε = n - 1 / 2 n 3 1 - μ p 12 - μ p 11 l ε = n eff l ε ,
ε = Δ x n eff l ,

Metrics