Abstract

We have developed an optical method for single-shot spatially resolved shock-wave peak-pressure measurements. A schlieren technique and streak photography were used to follow the propagation of the shock wave. The shock position r as a function of time was extracted from the streak images by digital image-processing techniques. The resulting r(t) curves were differentiated with respect to time to yield shock-wave velocities that were converted to shock pressures with the aid of the equation of the state of the medium. Features and limitations of the technique are demonstrated and discussed on the basis of measurements of shock-wave amplitudes generated by laser-induced breakdown in water. For this purpose, laser pulses of 6-ns duration and pulse energies of 1 and 10 mJ were focused into a cuvette containing water. Complete p(t) curves were obtained with a temporal resolution in the subnanosecond range. The total acquisition and processing time for a single event is ∼2 min. The shock-peak pressures at the source were found to be 8.4 ± 1.5 and 11.8 ± 1.6 GPa for pulse energies of 1 and 10 mJ, respectively. Within the first two source radii, the shock-wave pressure p(r) was found to decay on average in proportion to r -1.3±0.2 for both pulse energies. Thereafter the pressure dropped in proportion to r -2.2±0.1. In water the method can be used to measure shock-wave amplitudes exceeding 0.1 GPa. Because it is a single-shot technique, the method is especially suited for investigating events with large statistical variations.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Cole, Underwater Explosions (Princeton U. Press, Princeton, N.J., 1948).
  2. R. T. Knapp, J. W. Daily, F. G. Hammit, Cavitation (McGraw-Hill, New York, 1970).
  3. A. Vogel, W. Lauterborn, R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid. Mech. 206, 299–338 (1989).
    [CrossRef]
  4. A. J. Coleman, J. E. Saunders, “A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy,” Ultrasonics 31, 75–89 (1993).
    [CrossRef]
  5. M. Delius, “Medical applications and bioeffects of extracorporeal shock waves,” Shock Waves 4, 55–72 (1994).
    [CrossRef]
  6. A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed Nd:YAG lasers,” Ophthalmology 93, 1257–1269 (1986).
  7. A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
    [CrossRef] [PubMed]
  8. R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
    [CrossRef] [PubMed]
  9. K. Teshima, T. Ohshima, S. Tanaka, T. Nagai, “Biomechanical effects of waves on Escherichia coli and λphage DNA,” Shock Waves 4, 293–297 (1995).
    [CrossRef]
  10. J. Noack, A. Vogel, “Streak-photographic investigations of shock wave emission after laser-induced plasma formation in water,” in Laser Tissue Interaction VI, S. L. Jacques, ed. Proc. SPIE2391, 284–293 (1995).
    [CrossRef]
  11. A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum. Electron. 26, 2240–2258 (1990).
    [CrossRef]
  12. A. G. Doukas, T. J. Flotte, “Physical characteristics and biological effects of laser-induced stress waves,” Ultrasound Med. Biol. 22, 151–164 (1996).
    [CrossRef] [PubMed]
  13. H. Schoeffmann, H. Schmidt-Kloiber, E. Reichel, “Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones,” J. Appl. Phys. 63, 46–51 (1988).
    [CrossRef]
  14. A. Vogel, W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
    [CrossRef]
  15. A. P. Alloncle, D. Dufresne, M. Autric, “Visualization of laser-induced vapor bubbles and pressure waves,” in Bubble Dynamics and Interface Phenomena, J. R. Blake, J. M. Boulton-Stone, N. H. Thomas, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 365–371.
    [CrossRef]
  16. A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, T. F. Deutsch, “Noninvasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245 (1991).
    [CrossRef]
  17. A. Vogel, S. Busch, U. Parlitz, “Shock-wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
    [CrossRef]
  18. B. Zysset, J. G. Fujimoto, T. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
    [CrossRef]
  19. K. Hohla, K. Büchl, R. Wienecke, S. Witkowski, “Energiebestimmung der Stosswelle eines laserinduzierten Gasdurchbruchs,” Z. Naturforsch. Teil A 24, 1244–1249 (1969).
  20. K. Nagayama, K. Nishihara, T. Murakami, “New continuous recording procedure of holographic information of transient phenomena,” Opt. Eng. 31, 1946–1951 (1992).
    [CrossRef]
  21. M. H. Rice, J. M. Walsh, “Equation of state of water to 250 kbar,” J. Chem. Phys. 26, 824–830 (1957).
    [CrossRef]
  22. G. E. Duvall, G. R. Fowles, “Shock waves,” in High Pressure Physics and Chemistry, R. S. Bradley, ed. (Academic, San Diego, Calif., 1963), Vol. 2, pp. 209–291.
  23. A. Vogel, K. Nahen, D. Theisen, J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Topics Quantum. Electron. 2, 847–860 (1996).
    [CrossRef]
  24. T. Pavlidis, Algorithms for Graphics and Image Processing (Computer Science Press, New York, 1982).
    [CrossRef]
  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  26. S. Brandt, Datenanalyse (BI-Wissenschaft, Mannheim, 1992).
  27. F. Docchio, P. Regondi, M. R. C. Capon, J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27, 3661–3668 (1988).
    [CrossRef] [PubMed]
  28. L. D. Landau, E. M. Lifschitz, Hydrodynamik, 5th ed. (Akademie Verlag, Berlin, 1995), Vol. 6, pp. 411–413.

1996 (3)

A. G. Doukas, T. J. Flotte, “Physical characteristics and biological effects of laser-induced stress waves,” Ultrasound Med. Biol. 22, 151–164 (1996).
[CrossRef] [PubMed]

A. Vogel, S. Busch, U. Parlitz, “Shock-wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Topics Quantum. Electron. 2, 847–860 (1996).
[CrossRef]

1995 (1)

K. Teshima, T. Ohshima, S. Tanaka, T. Nagai, “Biomechanical effects of waves on Escherichia coli and λphage DNA,” Shock Waves 4, 293–297 (1995).
[CrossRef]

1994 (2)

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

M. Delius, “Medical applications and bioeffects of extracorporeal shock waves,” Shock Waves 4, 55–72 (1994).
[CrossRef]

1993 (2)

A. J. Coleman, J. E. Saunders, “A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy,” Ultrasonics 31, 75–89 (1993).
[CrossRef]

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef] [PubMed]

1992 (1)

K. Nagayama, K. Nishihara, T. Murakami, “New continuous recording procedure of holographic information of transient phenomena,” Opt. Eng. 31, 1946–1951 (1992).
[CrossRef]

1991 (1)

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, T. F. Deutsch, “Noninvasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245 (1991).
[CrossRef]

1990 (1)

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum. Electron. 26, 2240–2258 (1990).
[CrossRef]

1989 (2)

A. Vogel, W. Lauterborn, R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid. Mech. 206, 299–338 (1989).
[CrossRef]

B. Zysset, J. G. Fujimoto, T. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
[CrossRef]

1988 (3)

H. Schoeffmann, H. Schmidt-Kloiber, E. Reichel, “Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones,” J. Appl. Phys. 63, 46–51 (1988).
[CrossRef]

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

F. Docchio, P. Regondi, M. R. C. Capon, J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27, 3661–3668 (1988).
[CrossRef] [PubMed]

1986 (1)

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed Nd:YAG lasers,” Ophthalmology 93, 1257–1269 (1986).

1969 (1)

K. Hohla, K. Büchl, R. Wienecke, S. Witkowski, “Energiebestimmung der Stosswelle eines laserinduzierten Gasdurchbruchs,” Z. Naturforsch. Teil A 24, 1244–1249 (1969).

1957 (1)

M. H. Rice, J. M. Walsh, “Equation of state of water to 250 kbar,” J. Chem. Phys. 26, 824–830 (1957).
[CrossRef]

Alloncle, A. P.

A. P. Alloncle, D. Dufresne, M. Autric, “Visualization of laser-induced vapor bubbles and pressure waves,” in Bubble Dynamics and Interface Phenomena, J. R. Blake, J. M. Boulton-Stone, N. H. Thomas, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 365–371.
[CrossRef]

Asiyo, M. N.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum. Electron. 26, 2240–2258 (1990).
[CrossRef]

Autric, M.

A. P. Alloncle, D. Dufresne, M. Autric, “Visualization of laser-induced vapor bubbles and pressure waves,” in Bubble Dynamics and Interface Phenomena, J. R. Blake, J. M. Boulton-Stone, N. H. Thomas, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 365–371.
[CrossRef]

Birngruber, R.

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, T. F. Deutsch, “Noninvasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245 (1991).
[CrossRef]

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum. Electron. 26, 2240–2258 (1990).
[CrossRef]

Brandt, S.

S. Brandt, Datenanalyse (BI-Wissenschaft, Mannheim, 1992).

Büchl, K.

K. Hohla, K. Büchl, R. Wienecke, S. Witkowski, “Energiebestimmung der Stosswelle eines laserinduzierten Gasdurchbruchs,” Z. Naturforsch. Teil A 24, 1244–1249 (1969).

Busch, S.

A. Vogel, S. Busch, U. Parlitz, “Shock-wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
[CrossRef]

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

Capon, M. R. C.

Cole, R. H.

R. H. Cole, Underwater Explosions (Princeton U. Press, Princeton, N.J., 1948).

Coleman, A. J.

A. J. Coleman, J. E. Saunders, “A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy,” Ultrasonics 31, 75–89 (1993).
[CrossRef]

Daily, J. W.

R. T. Knapp, J. W. Daily, F. G. Hammit, Cavitation (McGraw-Hill, New York, 1970).

Delius, M.

M. Delius, “Medical applications and bioeffects of extracorporeal shock waves,” Shock Waves 4, 55–72 (1994).
[CrossRef]

Deutsch, T.

B. Zysset, J. G. Fujimoto, T. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
[CrossRef]

Deutsch, T. F.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, T. F. Deutsch, “Noninvasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245 (1991).
[CrossRef]

Docchio, F.

Doukas, A. G.

A. G. Doukas, T. J. Flotte, “Physical characteristics and biological effects of laser-induced stress waves,” Ultrasound Med. Biol. 22, 151–164 (1996).
[CrossRef] [PubMed]

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, T. F. Deutsch, “Noninvasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245 (1991).
[CrossRef]

Dufresne, D.

A. P. Alloncle, D. Dufresne, M. Autric, “Visualization of laser-induced vapor bubbles and pressure waves,” in Bubble Dynamics and Interface Phenomena, J. R. Blake, J. M. Boulton-Stone, N. H. Thomas, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 365–371.
[CrossRef]

Duvall, G. E.

G. E. Duvall, G. R. Fowles, “Shock waves,” in High Pressure Physics and Chemistry, R. S. Bradley, ed. (Academic, San Diego, Calif., 1963), Vol. 2, pp. 209–291.

Esenaliev, R. O.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Flotte, T. J.

A. G. Doukas, T. J. Flotte, “Physical characteristics and biological effects of laser-induced stress waves,” Ultrasound Med. Biol. 22, 151–164 (1996).
[CrossRef] [PubMed]

Fowles, G. R.

G. E. Duvall, G. R. Fowles, “Shock waves,” in High Pressure Physics and Chemistry, R. S. Bradley, ed. (Academic, San Diego, Calif., 1963), Vol. 2, pp. 209–291.

Frieser, A.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum. Electron. 26, 2240–2258 (1990).
[CrossRef]

Frisoli, J. K.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, T. F. Deutsch, “Noninvasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245 (1991).
[CrossRef]

Fujimoto, J. G.

B. Zysset, J. G. Fujimoto, T. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
[CrossRef]

Hammit, F. G.

R. T. Knapp, J. W. Daily, F. G. Hammit, Cavitation (McGraw-Hill, New York, 1970).

Hentschel, W.

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed Nd:YAG lasers,” Ophthalmology 93, 1257–1269 (1986).

Hohla, K.

K. Hohla, K. Büchl, R. Wienecke, S. Witkowski, “Energiebestimmung der Stosswelle eines laserinduzierten Gasdurchbruchs,” Z. Naturforsch. Teil A 24, 1244–1249 (1969).

Holzfuss, J.

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed Nd:YAG lasers,” Ophthalmology 93, 1257–1269 (1986).

Jungnickel, K.

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

Karabutov, A. A.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef] [PubMed]

Knapp, R. T.

R. T. Knapp, J. W. Daily, F. G. Hammit, Cavitation (McGraw-Hill, New York, 1970).

Landau, L. D.

L. D. Landau, E. M. Lifschitz, Hydrodynamik, 5th ed. (Akademie Verlag, Berlin, 1995), Vol. 6, pp. 411–413.

Lauterborn, W.

A. Vogel, W. Lauterborn, R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid. Mech. 206, 299–338 (1989).
[CrossRef]

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed Nd:YAG lasers,” Ophthalmology 93, 1257–1269 (1986).

Letokhov, V. S.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef] [PubMed]

Lifschitz, E. M.

L. D. Landau, E. M. Lifschitz, Hydrodynamik, 5th ed. (Akademie Verlag, Berlin, 1995), Vol. 6, pp. 411–413.

Malinsky, T. V.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef] [PubMed]

Mellerio, J.

Murakami, T.

K. Nagayama, K. Nishihara, T. Murakami, “New continuous recording procedure of holographic information of transient phenomena,” Opt. Eng. 31, 1946–1951 (1992).
[CrossRef]

Nagai, T.

K. Teshima, T. Ohshima, S. Tanaka, T. Nagai, “Biomechanical effects of waves on Escherichia coli and λphage DNA,” Shock Waves 4, 293–297 (1995).
[CrossRef]

Nagayama, K.

K. Nagayama, K. Nishihara, T. Murakami, “New continuous recording procedure of holographic information of transient phenomena,” Opt. Eng. 31, 1946–1951 (1992).
[CrossRef]

Nahen, K.

A. Vogel, K. Nahen, D. Theisen, J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Topics Quantum. Electron. 2, 847–860 (1996).
[CrossRef]

Nishihara, K.

K. Nagayama, K. Nishihara, T. Murakami, “New continuous recording procedure of holographic information of transient phenomena,” Opt. Eng. 31, 1946–1951 (1992).
[CrossRef]

Noack, J.

A. Vogel, K. Nahen, D. Theisen, J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Topics Quantum. Electron. 2, 847–860 (1996).
[CrossRef]

J. Noack, A. Vogel, “Streak-photographic investigations of shock wave emission after laser-induced plasma formation in water,” in Laser Tissue Interaction VI, S. L. Jacques, ed. Proc. SPIE2391, 284–293 (1995).
[CrossRef]

Ohshima, T.

K. Teshima, T. Ohshima, S. Tanaka, T. Nagai, “Biomechanical effects of waves on Escherichia coli and λphage DNA,” Shock Waves 4, 293–297 (1995).
[CrossRef]

Oraevsky, A. A.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef] [PubMed]

Parlitz, U.

A. Vogel, S. Busch, U. Parlitz, “Shock-wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
[CrossRef]

Pavlidis, T.

T. Pavlidis, Algorithms for Graphics and Image Processing (Computer Science Press, New York, 1982).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Regondi, P.

Reichel, E.

H. Schoeffmann, H. Schmidt-Kloiber, E. Reichel, “Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones,” J. Appl. Phys. 63, 46–51 (1988).
[CrossRef]

Rice, M. H.

M. H. Rice, J. M. Walsh, “Equation of state of water to 250 kbar,” J. Chem. Phys. 26, 824–830 (1957).
[CrossRef]

Saunders, J. E.

A. J. Coleman, J. E. Saunders, “A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy,” Ultrasonics 31, 75–89 (1993).
[CrossRef]

Schmidt-Kloiber, H.

H. Schoeffmann, H. Schmidt-Kloiber, E. Reichel, “Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones,” J. Appl. Phys. 63, 46–51 (1988).
[CrossRef]

Schoeffmann, H.

H. Schoeffmann, H. Schmidt-Kloiber, E. Reichel, “Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones,” J. Appl. Phys. 63, 46–51 (1988).
[CrossRef]

Schweiger, P.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum. Electron. 26, 2240–2258 (1990).
[CrossRef]

Tanaka, S.

K. Teshima, T. Ohshima, S. Tanaka, T. Nagai, “Biomechanical effects of waves on Escherichia coli and λphage DNA,” Shock Waves 4, 293–297 (1995).
[CrossRef]

Teshima, K.

K. Teshima, T. Ohshima, S. Tanaka, T. Nagai, “Biomechanical effects of waves on Escherichia coli and λphage DNA,” Shock Waves 4, 293–297 (1995).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Theisen, D.

A. Vogel, K. Nahen, D. Theisen, J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Topics Quantum. Electron. 2, 847–860 (1996).
[CrossRef]

Timm, R.

A. Vogel, W. Lauterborn, R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid. Mech. 206, 299–338 (1989).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Vogel, A.

A. Vogel, K. Nahen, D. Theisen, J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Topics Quantum. Electron. 2, 847–860 (1996).
[CrossRef]

A. Vogel, S. Busch, U. Parlitz, “Shock-wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
[CrossRef]

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum. Electron. 26, 2240–2258 (1990).
[CrossRef]

A. Vogel, W. Lauterborn, R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid. Mech. 206, 299–338 (1989).
[CrossRef]

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed Nd:YAG lasers,” Ophthalmology 93, 1257–1269 (1986).

J. Noack, A. Vogel, “Streak-photographic investigations of shock wave emission after laser-induced plasma formation in water,” in Laser Tissue Interaction VI, S. L. Jacques, ed. Proc. SPIE2391, 284–293 (1995).
[CrossRef]

Walsh, J. M.

M. H. Rice, J. M. Walsh, “Equation of state of water to 250 kbar,” J. Chem. Phys. 26, 824–830 (1957).
[CrossRef]

Wienecke, R.

K. Hohla, K. Büchl, R. Wienecke, S. Witkowski, “Energiebestimmung der Stosswelle eines laserinduzierten Gasdurchbruchs,” Z. Naturforsch. Teil A 24, 1244–1249 (1969).

Witkowski, S.

K. Hohla, K. Büchl, R. Wienecke, S. Witkowski, “Energiebestimmung der Stosswelle eines laserinduzierten Gasdurchbruchs,” Z. Naturforsch. Teil A 24, 1244–1249 (1969).

Zweig, A. D.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, T. F. Deutsch, “Noninvasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245 (1991).
[CrossRef]

Zysset, B.

B. Zysset, J. G. Fujimoto, T. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

B. Zysset, J. G. Fujimoto, T. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
[CrossRef]

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, T. F. Deutsch, “Noninvasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245 (1991).
[CrossRef]

IEEE J. Quantum. Electron. (1)

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum. Electron. 26, 2240–2258 (1990).
[CrossRef]

IEEE J. Sel. Topics Quantum. Electron. (1)

A. Vogel, K. Nahen, D. Theisen, J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Topics Quantum. Electron. 2, 847–860 (1996).
[CrossRef]

J. Acoust. Soc. Am. (2)

A. Vogel, S. Busch, U. Parlitz, “Shock-wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
[CrossRef]

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

J. Appl. Phys. (1)

H. Schoeffmann, H. Schmidt-Kloiber, E. Reichel, “Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones,” J. Appl. Phys. 63, 46–51 (1988).
[CrossRef]

J. Chem. Phys. (1)

M. H. Rice, J. M. Walsh, “Equation of state of water to 250 kbar,” J. Chem. Phys. 26, 824–830 (1957).
[CrossRef]

J. Fluid. Mech. (1)

A. Vogel, W. Lauterborn, R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid. Mech. 206, 299–338 (1989).
[CrossRef]

Lasers Surg. Med. (2)

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef] [PubMed]

Ophthalmology (1)

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed Nd:YAG lasers,” Ophthalmology 93, 1257–1269 (1986).

Opt. Eng. (1)

K. Nagayama, K. Nishihara, T. Murakami, “New continuous recording procedure of holographic information of transient phenomena,” Opt. Eng. 31, 1946–1951 (1992).
[CrossRef]

Shock Waves (2)

M. Delius, “Medical applications and bioeffects of extracorporeal shock waves,” Shock Waves 4, 55–72 (1994).
[CrossRef]

K. Teshima, T. Ohshima, S. Tanaka, T. Nagai, “Biomechanical effects of waves on Escherichia coli and λphage DNA,” Shock Waves 4, 293–297 (1995).
[CrossRef]

Ultrasonics (1)

A. J. Coleman, J. E. Saunders, “A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy,” Ultrasonics 31, 75–89 (1993).
[CrossRef]

Ultrasound Med. Biol. (1)

A. G. Doukas, T. J. Flotte, “Physical characteristics and biological effects of laser-induced stress waves,” Ultrasound Med. Biol. 22, 151–164 (1996).
[CrossRef] [PubMed]

Z. Naturforsch. Teil A (1)

K. Hohla, K. Büchl, R. Wienecke, S. Witkowski, “Energiebestimmung der Stosswelle eines laserinduzierten Gasdurchbruchs,” Z. Naturforsch. Teil A 24, 1244–1249 (1969).

Other (9)

T. Pavlidis, Algorithms for Graphics and Image Processing (Computer Science Press, New York, 1982).
[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

S. Brandt, Datenanalyse (BI-Wissenschaft, Mannheim, 1992).

G. E. Duvall, G. R. Fowles, “Shock waves,” in High Pressure Physics and Chemistry, R. S. Bradley, ed. (Academic, San Diego, Calif., 1963), Vol. 2, pp. 209–291.

L. D. Landau, E. M. Lifschitz, Hydrodynamik, 5th ed. (Akademie Verlag, Berlin, 1995), Vol. 6, pp. 411–413.

A. P. Alloncle, D. Dufresne, M. Autric, “Visualization of laser-induced vapor bubbles and pressure waves,” in Bubble Dynamics and Interface Phenomena, J. R. Blake, J. M. Boulton-Stone, N. H. Thomas, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 365–371.
[CrossRef]

R. H. Cole, Underwater Explosions (Princeton U. Press, Princeton, N.J., 1948).

R. T. Knapp, J. W. Daily, F. G. Hammit, Cavitation (McGraw-Hill, New York, 1970).

J. Noack, A. Vogel, “Streak-photographic investigations of shock wave emission after laser-induced plasma formation in water,” in Laser Tissue Interaction VI, S. L. Jacques, ed. Proc. SPIE2391, 284–293 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for simultaneous streak and framing photography of laser-induced breakdown.

Fig. 2
Fig. 2

Overview of the image- and data-processing steps used to obtain the shock pressures. The images acquired after laser-induced breakdown with a 10 mJ-pulse. The length of the bars corresponds to 100 μm (vertical) and 10 ns (horizontal), respectively.

Fig. 3
Fig. 3

Representative framing and corresponding streak images of laser-induced breakdown with 1-mJ (top) and 10-mJ (bottom) pulses. The framing images (left) indicate the location of the streak slit (dark line). The streak images (right) show an enlarged view of the first 100 ns of the streak window. The horizontal bars correspond to 10 ns (horizontal), and the vertical bars correspond to 100 μm (vertical). The white lines indicate the position of the shock wave as determined by the image-processing algorithm. The small steps in the fitted function are an artifact introduced by drawing the smooth fitted function into the discrete pixel grid of the original image. The arrows indicate the time and place at which the shock wave leaves the luminescent plasma.

Fig. 4
Fig. 4

(a) Shock-wave velocity and (b) shock-wave peak pressure as a function of distance from the optical axis. (a) Each curve represents a shock wave emitted after laser-induced breakdown with laser pulses of 1 and 10 mJ, respectively. (b) The solid curves were obtained from the average shock velocity for each pulse energy. The dashed curves indicate the standard deviation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p = A ρ 0 u 10 u - c 0 / B - 1 ,
g x , y = p x - 1 , y - 1 + 2 p x , y - 1 + p x + 1 , y - 1 - p x - 1 , y + 1 + 2 p x , y + 1 + p x + 1 , y + 1 .
r t = a 0 + a 1 t + a 2 ln   t + i = 3 n a i t i - 2 .

Metrics