Abstract

A fiber-optic hydrostatic pressure sensor initially temperature compensated by optical means is further desensitized below the limits associated with second-order effects by the method proposed in this paper. We achieved this goal by using an integrated system of two coherence-multiplexed separate sensor components for simultaneous measurement of hydrostatic pressure and temperature and by on-line numerical processing of measurement data delivered simultaneously from both sensor parts. The system is based on highly birefringent fibers, employs electronic scanning, and can be used for quasi-static measurements.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Norwood, Mass., 1995).
  2. K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
    [CrossRef]
  3. J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
    [CrossRef]
  4. W. J. Bock, W. Urbańczyk, R. Buczynski, A. W. Domanski, “Cross-sensitivity effect in temperature-compensated sensors based on highly birefringent fibers,” Appl. Opt. 33, 6078–6083 (1994).
    [CrossRef] [PubMed]
  5. W. J. Bock, W. Urbańczyk, “Temperature–hydrostatic pressure cross-sensitivity effect in elliptical-core, highly birefringent fibers,” Appl. Opt. 35, 6267–6270 (1996).
    [CrossRef] [PubMed]
  6. W. Urbańczyk, W. J. Bock, “Visibility of white-light interference patterns for a chain of coherence multiplexed sensors based on highly birefringent fibers,” Opt. Eng. 32, 2100–2106 (1993).
    [CrossRef]
  7. W. J. Bock, W. Urbańczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fibers,” Opt. Commun. 101, 157–162 (1993).
    [CrossRef]

1996 (1)

1994 (1)

1993 (2)

W. Urbańczyk, W. J. Bock, “Visibility of white-light interference patterns for a chain of coherence multiplexed sensors based on highly birefringent fibers,” Opt. Eng. 32, 2100–2106 (1993).
[CrossRef]

W. J. Bock, W. Urbańczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fibers,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

1984 (1)

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Bock, W. J.

W. J. Bock, W. Urbańczyk, “Temperature–hydrostatic pressure cross-sensitivity effect in elliptical-core, highly birefringent fibers,” Appl. Opt. 35, 6267–6270 (1996).
[CrossRef] [PubMed]

W. J. Bock, W. Urbańczyk, R. Buczynski, A. W. Domanski, “Cross-sensitivity effect in temperature-compensated sensors based on highly birefringent fibers,” Appl. Opt. 33, 6078–6083 (1994).
[CrossRef] [PubMed]

W. Urbańczyk, W. J. Bock, “Visibility of white-light interference patterns for a chain of coherence multiplexed sensors based on highly birefringent fibers,” Opt. Eng. 32, 2100–2106 (1993).
[CrossRef]

W. J. Bock, W. Urbańczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fibers,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

Buczynski, R.

Dakin, J. P.

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Domanski, A. W.

Dyott, R. B.

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Norwood, Mass., 1995).

Grattan, K. T. V.

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
[CrossRef]

Meggitt, B. T.

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
[CrossRef]

Urbanczyk, W.

W. J. Bock, W. Urbańczyk, “Temperature–hydrostatic pressure cross-sensitivity effect in elliptical-core, highly birefringent fibers,” Appl. Opt. 35, 6267–6270 (1996).
[CrossRef] [PubMed]

W. J. Bock, W. Urbańczyk, R. Buczynski, A. W. Domanski, “Cross-sensitivity effect in temperature-compensated sensors based on highly birefringent fibers,” Appl. Opt. 33, 6078–6083 (1994).
[CrossRef] [PubMed]

W. Urbańczyk, W. J. Bock, “Visibility of white-light interference patterns for a chain of coherence multiplexed sensors based on highly birefringent fibers,” Opt. Eng. 32, 2100–2106 (1993).
[CrossRef]

W. J. Bock, W. Urbańczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fibers,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

Wade, C. A.

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Zaremba, M.

W. J. Bock, W. Urbańczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fibers,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Opt. Commun. (1)

W. J. Bock, W. Urbańczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fibers,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

Opt. Eng. (1)

W. Urbańczyk, W. J. Bock, “Visibility of white-light interference patterns for a chain of coherence multiplexed sensors based on highly birefringent fibers,” Opt. Eng. 32, 2100–2106 (1993).
[CrossRef]

Other (2)

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Norwood, Mass., 1995).

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schema of the coherence-multiplexed pressure and temperature sensors and (b) details of the receiving interferometer.

Fig. 2
Fig. 2

(a) Schema of the sensing head that illustrates location of the loop of the sensing fiber and (b) the loop that contains the compensating, addressing, linking, and temperature sensing fibers.

Fig. 3
Fig. 3

Characteristic of the temperature sensor.

Fig. 4
Fig. 4

Characteristics of the pressure sensors at 5 °C and 45 °C.

Fig. 5
Fig. 5

Simultaneous responses of the pressure and temperature sensors to step-type temperature changes at atmospheric pressure.

Fig. 6
Fig. 6

Residual temperature drift of a temperature-compensated pressure sensor at atmospheric pressure.

Fig. 7
Fig. 7

Dependence of the pressure sensitivity of a temperature-compensated pressure sensor on temperature.

Tables (1)

Tables Icon

Table 1 Pressures Recovered at Different Temperatures with the Temperature Correction Procedure

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ T = Δ LK T Δ T + L S K TX Δ T Δ X ,
K T = 2 π λ Δ n T ,     K TX = 2 π λ 2 Δ n X T ,
L S Δ N S T - L C Δ N C T - L A Δ N A T 0 ,
Δ R = Δ N S L S - L C Δ N C - L A Δ N A ,
M T = M 0 T + S T T ,
M P = M 0 P + S P P + s T T + s TP PT ,
s T = M P T P = 0 ,
s TP = 2 M P T P .
P = M P - M 0 - s T T - s TP PT / S P .

Metrics