## Abstract

A fiber-optic hydrostatic pressure sensor initially temperature
compensated by optical means is further desensitized below the limits
associated with second-order effects by the method proposed in this
paper. We achieved this goal by using an integrated system of two
coherence-multiplexed separate sensor components for simultaneous
measurement of hydrostatic pressure and temperature and by on-line
numerical processing of measurement data delivered simultaneously from
both sensor parts. The system is based on highly birefringent
fibers, employs electronic scanning, and can be used for quasi-static
measurements.

© 1998 Optical Society of America

Full Article |

PDF Article
### Equations (9)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$\mathrm{\Delta}{\mathrm{\varphi}}_{T}=\mathrm{\Delta}{\mathit{LK}}_{T}\mathrm{\Delta}T+{L}_{S}{K}_{\mathit{TX}}\mathrm{\Delta}T\mathrm{\Delta}X,$$
(2)
$${K}_{T}=\frac{2\mathrm{\pi}}{\mathrm{\lambda}}\frac{\partial \mathrm{\Delta}n}{\partial T},{K}_{\mathit{TX}}=\frac{2\mathrm{\pi}}{\mathrm{\lambda}}\frac{{\partial}^{2}\mathrm{\Delta}n}{\partial X\partial T},$$
(3)
$${L}_{S}\frac{\partial \mathrm{\Delta}{N}_{S}}{\partial T}-{L}_{C}\frac{\partial \mathrm{\Delta}{N}_{C}}{\partial T}-{L}_{A}\frac{\partial \mathrm{\Delta}{N}_{A}}{\partial T}\approx 0,$$
(4)
$$\mathrm{\Delta}R=\mathrm{\Delta}{N}_{S}{L}_{S}-{L}_{C}\mathrm{\Delta}{N}_{C}-{L}_{A}\mathrm{\Delta}{N}_{A},$$
(5)
$${M}_{T}=M_{0}{}^{T}+{S}_{T}T,$$
(6)
$${M}_{P}=M_{0}{}^{P}+{S}_{P}P+{s}_{T}T+{s}_{\mathit{TP}}\mathit{PT},$$
(7)
$${s}_{T}={\left.\frac{\partial {M}_{P}}{\partial T}\right|}_{P=0},$$
(8)
$${s}_{\mathit{TP}}=\frac{{\partial}^{2}{M}_{P}}{\partial T\partial P}.$$
(9)
$$P=\left({M}_{P}-{M}_{0}-{s}_{T}T-{s}_{\mathit{TP}}\mathit{PT}\right)/{S}_{P}.$$