Abstract

A comprehensive formulation of the differential absorption lidar (DIAL) methodology is presented that explicitly includes details of the spectral distributions of both the transmitted and the backscattered light. The method is important for high-accuracy water-vapor retrievals and in particular for temperature measurements. Probability estimates of the error that is due to Doppler-broadened Rayleigh scattering based on an extended experimental data set are presented, as is an analytical treatment of errors that are due to averaging in the nonlinear retrieval scheme. System performance requirements are derived that show that water-vapor retrievals with an accuracy of better than 5% and temperature retrievals with an accuracy of better than 1 K in the entire troposphere are feasible if the error that results from Rayleigh–Doppler correction can be avoided. A modification of the DIAL technique, high-spectral-resolution DIAL avoids errors that are due to Doppler-broadened Rayleigh backscatter and permits simultaneous water-vapor and wind measurements with the same system.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).
  2. Study Group on GEWEX, “Concept of the Global Energy and Water Cycle Experiment,” World Climate Research Program Rep. 215 (World Meteorological Organization, Geneva, Switzerland, 1988).
  3. “Report of the first workshop of the World Climate Research Program/Global Energy and Water Cycle Experiment Water Vapour Project (GVap),” 12–15 November 1996, World Climate Research Programme Informal Report No. 8 (World Meteorological Organization, Geneva, Switzerland, 1997).
  4. D. O’C. Starr, S. H. Melfi, “The role of water-vapor in climate,” NASA Conf. Publ. 3120 (NASA, Washington, D.C., 1991).
  5. C. Senff, J. Bösenberg, G. Peters, “Measurement of water-vapor flux profiles in the convective boundary layer with lidar and radar-RASS,” J. Atmos. Ocean. Technol. 11, 85–93 (1994).
    [CrossRef]
  6. C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and RADAR-RASS: a case study,” Contrib. Atmos. Physics 69, 161–176 (1996).
  7. E. R. Westwater, “Ground-based microwave remote sensing of meteorological variables,” in Atmospheric Remote Sensing by Microwave Radiometer, M. Janssen, ed., (Wiley, New York, 1993), Chap. 4, pp. 145–213.
  8. W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
    [CrossRef]
  9. A. Chedin, M. T. Chahine, N. A. Scott, High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies (Springer-Verlag, Berlin, 1993).
    [CrossRef]
  10. R. D. Schotland, “Some observations of the vertical profile of water-vapor by means of a ground based optical radar,” in Proceedings of the International Symposium on Remote Sensing of Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 271–273.
  11. W. B. Grant, “Differential absorption and Raman lidar for water-vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
    [CrossRef]
  12. D. Bruneau, T. A. des Lions, P. Quaglia, J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994).
    [CrossRef] [PubMed]
  13. P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.
  14. G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water-vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
    [CrossRef] [PubMed]
  15. A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.
  16. J. Bösenberg, “A differential absorption lidar system for high resolution water-vapor measurements in the troposphere,” Rep. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).
  17. A. Ansmann, “Errors in ground-based water-vapor DIAL-measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985).
    [CrossRef] [PubMed]
  18. A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water-vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
    [CrossRef] [PubMed]
  19. J. B. Mason, “LIDAR measurements of temperature: a new approach,” Appl. Opt. 14, 76–78 (1975).
    [PubMed]
  20. G. Mégie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34–43 (1980).
    [CrossRef]
  21. C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength LIDAR technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
    [CrossRef]
  22. F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
    [CrossRef]
  23. R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
    [CrossRef]
  24. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  25. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water-vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
    [CrossRef] [PubMed]
  26. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
    [CrossRef] [PubMed]
  27. R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
    [CrossRef]
  28. F. A. Theopold, “Bestimmung des Temperaturprofils der Troposphäre mit einem Zwei-Frequenz-Lidar,” Ph.D. dissertation (Universität Hamburg, Hamburg, Germany, 1990).
  29. D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
    [CrossRef] [PubMed]
  30. M. J. T. Milton, P. T. Woods, “Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter,” Appl. Opt. 26, 2598–2603 (1987).
    [CrossRef] [PubMed]
  31. W. Staehr, W. Lahmann, C. Weitkamp, “Range-resolved differential absorption lidar: optimization of range and sensitivity,” Appl. Opt. 24, 1950–1956 (1985).
    [CrossRef] [PubMed]
  32. W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential absorption lidar averaging,” Appl. Opt. 27, 1934–1938 (1988).
    [CrossRef] [PubMed]
  33. J. Bösenberg, F. Theopold, “Evaluation of DIAL measurements in presence of signal noise,” in Proceedings of the 14th International Laser Radar Conference, V. Cammelli, V. M. Sacco, eds., (Instituto di Ricerca sulle Onde Elettromagnetiche/Consiglio Nazionale delle Ricerche, Firenze, Italy, 1988), pp. 209–211.
  34. W. M. Davenport, W. L. Root, Random Signals and Noise (McGraw-Hill, New York, 1958).
  35. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Orbiting lidar simulations. 1. Aerosol and cloud measurements by an independent-wavelength technique,” Appl. Opt. 21, 1541–1553 (1982).
    [CrossRef] [PubMed]
  36. R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable laser measurements of water-vapor transitions in the vicinity of 5 μm,” Chem. Phys. Lett. 19, 524–528 (1973).
    [CrossRef]
  37. R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable diode laser measurements of water vapour absorption line parameters,” Mol. Phys. 28, 653–664 (1974).
    [CrossRef]
  38. J. Bösenberg, “Measurements of the pressure shift of water-vapor absorption lines by simultaneous photoacoustic spectroscopy,” Appl. Opt. 24, 3531–3534 (1985).
    [CrossRef]
  39. B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
    [CrossRef]
  40. K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
    [CrossRef]
  41. B. Grossmann, E. V. Browell, “Spectroscopy of water-vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
    [CrossRef]
  42. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
    [CrossRef]
  43. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).
    [CrossRef]
  44. S. G. Rautian, I. I. Sobel’Man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
    [CrossRef]
  45. United States Committee on Extension to the Standard Atmosphere, “U.S. Standard Atmosphere 1976” (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).
  46. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef] [PubMed]
  47. V. Wulfmeyer, J. Bösenberg, “Single mode solid state water-vapor and temperature DIAL system: measurements of water-vapor profiles in the troposphere,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 305–308.
  48. Y. Zhao, T. K. Lea, R. M. Schotland, “Correction function for the lidar equation and some techniques for incoherent CO2 lidar data reduction,” Appl. Opt. 27, 2730–2740 (1988).
    [CrossRef] [PubMed]
  49. F. A. Theopold, C. Weitkamp, W. Michaelis, “BELINDA: broadband emission lidar with narrowband determination of absorption. A new concept for measuring water-vapor and temperature profiles,” in 16th International Laser Radar Conference, M. P. McCormick, ed., NASA Conf. Publ. 3158 (NASA, Washington, D.C., 1992).
  50. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
    [CrossRef]
  51. V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
    [CrossRef]

1998 (2)

1996 (1)

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and RADAR-RASS: a case study,” Contrib. Atmos. Physics 69, 161–176 (1996).

1995 (1)

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

1994 (2)

C. Senff, J. Bösenberg, G. Peters, “Measurement of water-vapor flux profiles in the convective boundary layer with lidar and radar-RASS,” J. Atmos. Ocean. Technol. 11, 85–93 (1994).
[CrossRef]

D. Bruneau, T. A. des Lions, P. Quaglia, J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994).
[CrossRef] [PubMed]

1993 (2)

G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water-vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
[CrossRef] [PubMed]

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
[CrossRef]

1992 (1)

1991 (1)

W. B. Grant, “Differential absorption and Raman lidar for water-vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
[CrossRef]

1990 (1)

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

1989 (3)

B. Grossmann, E. V. Browell, “Spectroscopy of water-vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water-vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

1988 (2)

1987 (4)

1985 (3)

1984 (1)

1982 (2)

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Orbiting lidar simulations. 1. Aerosol and cloud measurements by an independent-wavelength technique,” Appl. Opt. 21, 1541–1553 (1982).
[CrossRef] [PubMed]

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength LIDAR technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

1980 (1)

1975 (1)

1974 (2)

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable diode laser measurements of water vapour absorption line parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

1973 (1)

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable laser measurements of water-vapor transitions in the vicinity of 5 μm,” Chem. Phys. Lett. 19, 524–528 (1973).
[CrossRef]

1967 (1)

S. G. Rautian, I. I. Sobel’Man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

1961 (1)

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).
[CrossRef]

1953 (1)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

Abiche, A.

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Ansmann, A.

Antill, C. W.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Barnes, J. C.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Betts, A.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Bogan, J. R.

Bosart, L.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Bösenberg, J.

V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and RADAR-RASS: a case study,” Contrib. Atmos. Physics 69, 161–176 (1996).

C. Senff, J. Bösenberg, G. Peters, “Measurement of water-vapor flux profiles in the convective boundary layer with lidar and radar-RASS,” J. Atmos. Ocean. Technol. 11, 85–93 (1994).
[CrossRef]

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
[CrossRef]

A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water-vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
[CrossRef] [PubMed]

J. Bösenberg, “Measurements of the pressure shift of water-vapor absorption lines by simultaneous photoacoustic spectroscopy,” Appl. Opt. 24, 3531–3534 (1985).
[CrossRef]

V. Wulfmeyer, J. Bösenberg, “Single mode solid state water-vapor and temperature DIAL system: measurements of water-vapor profiles in the troposphere,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 305–308.

J. Bösenberg, “A differential absorption lidar system for high resolution water-vapor measurements in the troposphere,” Rep. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).

J. Bösenberg, F. Theopold, “Evaluation of DIAL measurements in presence of signal noise,” in Proceedings of the 14th International Laser Radar Conference, V. Cammelli, V. M. Sacco, eds., (Instituto di Ricerca sulle Onde Elettromagnetiche/Consiglio Nazionale delle Ricerche, Firenze, Italy, 1988), pp. 209–211.

Bretherton, C.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Brient, B.

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Brothers, A. M.

Browell, E. V.

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Spectroscopy of water-vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water-vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Brown, K. E.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Bruneau, D.

D. Bruneau, T. A. des Lions, P. Quaglia, J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994).
[CrossRef] [PubMed]

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Calawa, A. R.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable diode laser measurements of water vapour absorption line parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable laser measurements of water-vapor transitions in the vicinity of 5 μm,” Chem. Phys. Lett. 19, 524–528 (1973).
[CrossRef]

Chahine, M. T.

A. Chedin, M. T. Chahine, N. A. Scott, High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies (Springer-Verlag, Berlin, 1993).
[CrossRef]

Chedin, A.

A. Chedin, M. T. Chahine, N. A. Scott, High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies (Springer-Verlag, Berlin, 1993).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
[CrossRef]

Danguy, T.

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Davenport, W. M.

W. M. Davenport, W. L. Root, Random Signals and Noise (McGraw-Hill, New York, 1958).

des Lions, T. A.

Dicke, R. H.

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

Droegemeier, K.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Edwards, W. C.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Ehret, G.

Emanuel, K.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Eng, R. S.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable diode laser measurements of water vapour absorption line parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable laser measurements of water-vapor transitions in the vicinity of 5 μm,” Chem. Phys. Lett. 19, 524–528 (1973).
[CrossRef]

Farrell, B.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Fassina, F.

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Fernald, F. G.

Flamant, P.

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Fritsch, J. M.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Galatry, L.

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).
[CrossRef]

Genau, P.

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Grams, G. W.

Grant, W. B.

W. B. Grant, “Differential absorption and Raman lidar for water-vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
[CrossRef]

W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential absorption lidar averaging,” Appl. Opt. 27, 1934–1938 (1988).
[CrossRef] [PubMed]

Grossmann, B.

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Spectroscopy of water-vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

Hall, W. M.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Harman, T. C.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable diode laser measurements of water vapour absorption line parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable laser measurements of water-vapor transitions in the vicinity of 5 μm,” Chem. Phys. Lett. 19, 524–528 (1973).
[CrossRef]

Houze, R.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Howell, H. B.

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Huang, H. L.

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Ismail, S.

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water-vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Jones, I. W.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Kelley, P. L.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable diode laser measurements of water vapour absorption line parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable laser measurements of water-vapor transitions in the vicinity of 5 μm,” Chem. Phys. Lett. 19, 524–528 (1973).
[CrossRef]

Kiemle, C.

Killinger, D. K.

D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
[CrossRef] [PubMed]

Knuteson, R. O.

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Koenig, E. W.

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Korb, C. L.

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength LIDAR technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

Lahmann, W.

LaPorte, D. D.

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Lea, T. K.

LeMone, M.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Lilly, D.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Little, A. D.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Livingston, J. M.

Lopez, M.

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Loth, C.

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Luck, W. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Marcovici, J. P.

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Mason, J. B.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).

Mégie, G.

Meissonier, M.

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Melfi, S. H.

D. O’C. Starr, S. H. Melfi, “The role of water-vapor in climate,” NASA Conf. Publ. 3120 (NASA, Washington, D.C., 1991).

Menyuk, N.

D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
[CrossRef] [PubMed]

Michaelis, W.

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

F. A. Theopold, C. Weitkamp, W. Michaelis, “BELINDA: broadband emission lidar with narrowband determination of absorption. A new concept for measuring water-vapor and temperature profiles,” in 16th International Laser Radar Conference, M. P. McCormick, ed., NASA Conf. Publ. 3158 (NASA, Washington, D.C., 1992).

Milton, M. J. T.

Mooradian, A.

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable laser measurements of water-vapor transitions in the vicinity of 5 μm,” Chem. Phys. Lett. 19, 524–528 (1973).
[CrossRef]

Moore, A. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Morley, B. M.

Nill, K. W.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable diode laser measurements of water vapour absorption line parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

Patterson, E. M.

Pelon, J.

D. Bruneau, T. A. des Lions, P. Quaglia, J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994).
[CrossRef] [PubMed]

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Peters, G.

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and RADAR-RASS: a case study,” Contrib. Atmos. Physics 69, 161–176 (1996).

C. Senff, J. Bösenberg, G. Peters, “Measurement of water-vapor flux profiles in the convective boundary layer with lidar and radar-RASS,” J. Atmos. Ocean. Technol. 11, 85–93 (1994).
[CrossRef]

Petway, L. B.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Quaglia, P.

D. Bruneau, T. A. des Lions, P. Quaglia, J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994).
[CrossRef] [PubMed]

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Rautian, S. G.

S. G. Rautian, I. I. Sobel’Man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Raymond, D.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Renger, W.

Revercomb, H. E.

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Riebesell, M.

Ritter, K. J.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Romand, B.

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

Root, W. L.

W. M. Davenport, W. L. Root, Random Signals and Noise (McGraw-Hill, New York, 1958).

Rotunno, R.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Russell, P. B.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Orbiting lidar simulations. 1. Aerosol and cloud measurements by an independent-wavelength technique,” Appl. Opt. 21, 1541–1553 (1982).
[CrossRef] [PubMed]

R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
[CrossRef]

Schaberl, T.

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and RADAR-RASS: a case study,” Contrib. Atmos. Physics 69, 161–176 (1996).

Schotland, R. D.

R. D. Schotland, “Some observations of the vertical profile of water-vapor by means of a ground based optical radar,” in Proceedings of the International Symposium on Remote Sensing of Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 271–273.

Schotland, R. M.

Y. Zhao, T. K. Lea, R. M. Schotland, “Correction function for the lidar equation and some techniques for incoherent CO2 lidar data reduction,” Appl. Opt. 27, 2730–2740 (1988).
[CrossRef] [PubMed]

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Scott, N. A.

A. Chedin, M. T. Chahine, N. A. Scott, High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies (Springer-Verlag, Berlin, 1993).
[CrossRef]

Senff, C.

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and RADAR-RASS: a case study,” Contrib. Atmos. Physics 69, 161–176 (1996).

C. Senff, J. Bösenberg, G. Peters, “Measurement of water-vapor flux profiles in the convective boundary layer with lidar and radar-RASS,” J. Atmos. Ocean. Technol. 11, 85–93 (1994).
[CrossRef]

Shapiro, M.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Silverman, S.

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Simmet, G.

Smith, R.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Smith, W. L.

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Sobel’Man, I. I.

S. G. Rautian, I. I. Sobel’Man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Sromovsky, L. A.

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Staehr, W.

Starr, D. O’C.

D. O’C. Starr, S. H. Melfi, “The role of water-vapor in climate,” NASA Conf. Publ. 3120 (NASA, Washington, D.C., 1991).

Theopold, F.

J. Bösenberg, F. Theopold, “Evaluation of DIAL measurements in presence of signal noise,” in Proceedings of the 14th International Laser Radar Conference, V. Cammelli, V. M. Sacco, eds., (Instituto di Ricerca sulle Onde Elettromagnetiche/Consiglio Nazionale delle Ricerche, Firenze, Italy, 1988), pp. 209–211.

Theopold, F. A.

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
[CrossRef]

F. A. Theopold, “Bestimmung des Temperaturprofils der Troposphäre mit einem Zwei-Frequenz-Lidar,” Ph.D. dissertation (Universität Hamburg, Hamburg, Germany, 1990).

F. A. Theopold, C. Weitkamp, W. Michaelis, “BELINDA: broadband emission lidar with narrowband determination of absorption. A new concept for measuring water-vapor and temperature profiles,” in 16th International Laser Radar Conference, M. P. McCormick, ed., NASA Conf. Publ. 3158 (NASA, Washington, D.C., 1992).

Thorpe, A.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Wandinger, U.

Weitkamp, C.

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

W. Staehr, W. Lahmann, C. Weitkamp, “Range-resolved differential absorption lidar: optimization of range and sensitivity,” Appl. Opt. 24, 1950–1956 (1985).
[CrossRef] [PubMed]

F. A. Theopold, C. Weitkamp, W. Michaelis, “BELINDA: broadband emission lidar with narrowband determination of absorption. A new concept for measuring water-vapor and temperature profiles,” in 16th International Laser Radar Conference, M. P. McCormick, ed., NASA Conf. Publ. 3158 (NASA, Washington, D.C., 1992).

Weng, C. Y.

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength LIDAR technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

Westwater, E. R.

E. R. Westwater, “Ground-based microwave remote sensing of meteorological variables,” in Atmospheric Remote Sensing by Microwave Radiometer, M. Janssen, ed., (Wiley, New York, 1993), Chap. 4, pp. 145–213.

Wilkerson, T. D.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Woods, P. T.

Woolf, H. M.

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Wulfmeyer, V.

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
[CrossRef]

V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

V. Wulfmeyer, J. Bösenberg, “Single mode solid state water-vapor and temperature DIAL system: measurements of water-vapor profiles in the troposphere,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 305–308.

Zhao, Y.

Appl. Opt. (17)

D. Bruneau, T. A. des Lions, P. Quaglia, J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994).
[CrossRef] [PubMed]

A. Ansmann, “Errors in ground-based water-vapor DIAL-measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985).
[CrossRef] [PubMed]

A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water-vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
[CrossRef] [PubMed]

J. B. Mason, “LIDAR measurements of temperature: a new approach,” Appl. Opt. 14, 76–78 (1975).
[PubMed]

G. Mégie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34–43 (1980).
[CrossRef]

G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water-vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
[CrossRef] [PubMed]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water-vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

J. Bösenberg, “Measurements of the pressure shift of water-vapor absorption lines by simultaneous photoacoustic spectroscopy,” Appl. Opt. 24, 3531–3534 (1985).
[CrossRef]

M. J. T. Milton, P. T. Woods, “Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter,” Appl. Opt. 26, 2598–2603 (1987).
[CrossRef] [PubMed]

W. Staehr, W. Lahmann, C. Weitkamp, “Range-resolved differential absorption lidar: optimization of range and sensitivity,” Appl. Opt. 24, 1950–1956 (1985).
[CrossRef] [PubMed]

W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential absorption lidar averaging,” Appl. Opt. 27, 1934–1938 (1988).
[CrossRef] [PubMed]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Orbiting lidar simulations. 1. Aerosol and cloud measurements by an independent-wavelength technique,” Appl. Opt. 21, 1541–1553 (1982).
[CrossRef] [PubMed]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

Y. Zhao, T. K. Lea, R. M. Schotland, “Correction function for the lidar equation and some techniques for incoherent CO2 lidar data reduction,” Appl. Opt. 27, 2730–2740 (1988).
[CrossRef] [PubMed]

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
[CrossRef]

V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Chem. Phys. Lett. (1)

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable laser measurements of water-vapor transitions in the vicinity of 5 μm,” Chem. Phys. Lett. 19, 524–528 (1973).
[CrossRef]

Contrib. Atmos. Physics (1)

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and RADAR-RASS: a case study,” Contrib. Atmos. Physics 69, 161–176 (1996).

J. Appl. Meteorol. (3)

W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength LIDAR technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

J. Atmos. Ocean. Technol. (2)

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
[CrossRef]

C. Senff, J. Bösenberg, G. Peters, “Measurement of water-vapor flux profiles in the convective boundary layer with lidar and radar-RASS,” J. Atmos. Ocean. Technol. 11, 85–93 (1994).
[CrossRef]

J. Mol. Spectrosc. (3)

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

B. Grossmann, E. V. Browell, “Spectroscopy of water-vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

Mol. Phys. (1)

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable diode laser measurements of water vapour absorption line parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

Opt. Eng. (1)

W. B. Grant, “Differential absorption and Raman lidar for water-vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
[CrossRef]

Phys. Rev. (2)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).
[CrossRef]

Science (1)

D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

S. G. Rautian, I. I. Sobel’Man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Other (17)

United States Committee on Extension to the Standard Atmosphere, “U.S. Standard Atmosphere 1976” (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).

R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

J. Bösenberg, “A differential absorption lidar system for high resolution water-vapor measurements in the troposphere,” Rep. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).

R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
[CrossRef]

F. A. Theopold, “Bestimmung des Temperaturprofils der Troposphäre mit einem Zwei-Frequenz-Lidar,” Ph.D. dissertation (Universität Hamburg, Hamburg, Germany, 1990).

P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.

A. Chedin, M. T. Chahine, N. A. Scott, High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies (Springer-Verlag, Berlin, 1993).
[CrossRef]

R. D. Schotland, “Some observations of the vertical profile of water-vapor by means of a ground based optical radar,” in Proceedings of the International Symposium on Remote Sensing of Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 271–273.

E. R. Westwater, “Ground-based microwave remote sensing of meteorological variables,” in Atmospheric Remote Sensing by Microwave Radiometer, M. Janssen, ed., (Wiley, New York, 1993), Chap. 4, pp. 145–213.

Study Group on GEWEX, “Concept of the Global Energy and Water Cycle Experiment,” World Climate Research Program Rep. 215 (World Meteorological Organization, Geneva, Switzerland, 1988).

“Report of the first workshop of the World Climate Research Program/Global Energy and Water Cycle Experiment Water Vapour Project (GVap),” 12–15 November 1996, World Climate Research Programme Informal Report No. 8 (World Meteorological Organization, Geneva, Switzerland, 1997).

D. O’C. Starr, S. H. Melfi, “The role of water-vapor in climate,” NASA Conf. Publ. 3120 (NASA, Washington, D.C., 1991).

F. A. Theopold, C. Weitkamp, W. Michaelis, “BELINDA: broadband emission lidar with narrowband determination of absorption. A new concept for measuring water-vapor and temperature profiles,” in 16th International Laser Radar Conference, M. P. McCormick, ed., NASA Conf. Publ. 3158 (NASA, Washington, D.C., 1992).

V. Wulfmeyer, J. Bösenberg, “Single mode solid state water-vapor and temperature DIAL system: measurements of water-vapor profiles in the troposphere,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 305–308.

J. Bösenberg, F. Theopold, “Evaluation of DIAL measurements in presence of signal noise,” in Proceedings of the 14th International Laser Radar Conference, V. Cammelli, V. M. Sacco, eds., (Instituto di Ricerca sulle Onde Elettromagnetiche/Consiglio Nazionale delle Ricerche, Firenze, Italy, 1988), pp. 209–211.

W. M. Davenport, W. L. Root, Random Signals and Noise (McGraw-Hill, New York, 1958).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sensitivity factors E 1 and E 2 for water-vapor measurements assuming a standard atmosphere. For measurements in the PBL the line at 13718.58 cm-1 and for measurements in the FT the line at 13739.44 cm-1 were chosen. (a) E 1 for the PBL, (b) E 1 for the FT, (c) E 2 for the PBL, (d) E 2 for the FT.

Fig. 2
Fig. 2

Sensitivity factors E 1 and E 2 for temperature measurements assuming a standard atmosphere. For measurements in the PBL the line P P 27,27 and for measurements in the FT the line P P 31,31 were chosen. (a) E 1 for the PBL, (b) E 1 for the FT, (c) E 2 for the PBL, (d) E 2 for the FT.

Fig. 3
Fig. 3

Cumulative distribution function of dS K /dR for the PBL and the EZ.

Fig. 4
Fig. 4

Cumulative distribution function of dS K /dR for the LFT.

Fig. 5
Fig. 5

Height distribution of the inverse scattering ratio S K (upper scale) and the water-vapor density (lower scale). The measurement was taken at the Meteorological Observatory of Lindenberg on 6 May 1996 at 10:41–10:51 UT; height resolution was 90–180 m.

Fig. 6
Fig. 6

Ratios of the effective absorption cross section including the change of spectral distribution to the cross section calculated with a constant spectrum, αeff,T eff as functions of optical depth and the ratio of laser to absorption line width b L /b a .

Tables (4)

Tables Icon

Table 1 Confidence Intervals for dSK/dR in units of 10-4 m-1

Tables Icon

Table 2 Confidence Intervals for the Relative Error of Water Vapor Retrieval Due to Incomplete Rayleigh Doppler Correction

Tables Icon

Table 3 Confidence Intervals for the Correction Term G1 and for the Error of the Temperature Retrieval

Tables Icon

Table 4 Required Laser Performance for Water Vapor and Temperature Measurements throughout the Troposphere with an Error Due To Individual Laser Properties of <3% or <0.6 K, Respectivelya

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

P ν ,   R = P L c τ L 2 A R 2   η ν ,   R β ν ,   R × exp - 2   0 R   α ν ,   r d r ,
P R = P 0 R 2 Δ ν Δ ν   l ν η ν ,   R T ν ,   R β ν ,   R × h ν - ν ,   R T ν ,   R d ν d ν ,
P 0 = P L c τ L A 2 ,     T ν ,   R = exp - 0 R   α ν ,   r d r
T a R = exp - 0 R α p r + α m r d r , T g ν ,   R = exp - 0 R   α g ν ,   r d r , T u R = Δ ν   l ν T g ν ,   R d ν , T d R = Δ ν   g ν ,   R T g ν ,   R d ν ,
l * ν ,   R = l ν T g ν ,   R Δ ν   l ν T g ν ,   R d ν
g ν ,   R = Δ ν   l * ν h ν - ν d ν
P R = P 0 R 2   η R β R T a 2 R T u R T d R .
d d R ln P R R 2 = d d R ln   η + d d R ln   β - 2 α p - 2 α m + 1 T u d T u d R + 1 T d d T d d R ,
1 T u d T u d R = Δ ν   α ν ,   R l * ν d ν - α u , eff R .
α d , eff R Δ ν   α ν ,   R g ν ,   R T g ν ,   R d ν Δ ν   g ν ,   R T g ν ,   R d ν ,
1 T d d T d d R = - α d , eff R + Δ ν d g ν ,   R d R   T g ν ,   R d ν Δ ν   g ν ,   R T g ν ,   R d ν .
G Δ ν d g ν ,   R d R   T g ν ,   R d ν Δ ν   g ν ,   R T g ν ,   R d ν ;
d d R ln PR 2 = d d R ln   η + d d R ln   β - 2 α p - 2 α m - α u , eff - α d , eff + G .
d d R ln P 1 R P 2 R = - 2 Δ α + d d R ln η 1 η 2 + d d R ln β 1 β 2 + Δ G ,
2 Δ α = - α u , eff , 1 + α u , eff , 2 - α d , eff , 1 + α d , eff , 2 - 2 α p , 1 + 2 α p , 2 - 2 α m , 1 + 2 α m , 2
S K = 1 K S = β m β = β m β m + β p ,
g ν ,   R = 1 - S K l ν + S K h ν ,   R .
G = Δ ν h ν ,   R - l ν d S K d R + S K d d R   h ν ,   R T g ν ,   R d ν S K Δ ν   h ν ,   R T g ν ,   R d ν + 1 - S K Δ ν   l ν T g ν ,   R d ν .
G G 1 + G 2 E 1 d S K d R + E 2 S K ,
E 1 = Δ ν   h ν ,   R T g ν ,   R d ν - Δ ν   l ν T g ν ,   R d ν S K Δ ν   h ν ,   R T g ν ,   R d ν + 1 - S K Δ ν   l ν T g ν ,   R d ν ,
E 2 = Δ ν d d R   h ν ,   R T g ν ,   R d ν S K Δ ν   h ν ,   R T g ν ,   R d ν + 1 - S K Δ ν   l ν T g ν ,   R d ν .
α = ϱ n q ,   p ,   T S T ,   Λ ν - ν 0 ,   p ,   T ,
ϱ n q ,   p ,   T = q   p k B T ,
S T ,   = S 0 T 0 T l exp - k B 1 T - 1 T 0 ,
Λ ν - ν 0 ,   p ,   T Λ V ν - ν 0 ,   p ,   T = f w ζ + ia ,
d α α = d T T k B T - 1 - l - 1 2 + Ξ Λ ,
d d R ln η 1 η 2 ,   d d R ln β 1 β 2 ,   d d R ln P 1 R P 2 R ,
δ Δ α g = 1 2 1 P 1 d δ P 1 d R - 1 P 2 d δ P 2 d R ,
δ Δ α = 1 2   Δ R δ P 1 P 1 2 + δ P 2 P 2 2 1 / 2 ,
2 Δ α = - d d R ln   P 1 - ln   P 2 + d d R ln   β 1 - ln   β 2 .
2 Δ α = - d d R ln P 1 ¯ - ln P 2 ¯ + d d R ln   β 1 - ln   β 2
2 Δ α ¯ = - d d R ln   P 1 R - ln   P 2 R ¯ + d d R ln   β 1 - ln   β 2 ¯ ,
P m = P i + P bg + P n .
P = P ¯ 1 + δ P ¯   x ,
ln P ¯ = ln P ¯ + ln 1 + δ P ¯   x ¯ ln P ¯ + δ P ¯   x ¯ + δ 2 2 P ¯ 2 x 2 ¯ .
ln P ¯ ln P ¯ + δ 2 2 P ¯ 2 .
S K Δ ν   h ν ,   R T g ν ,   R d ν + 1 - S K Δ ν   l ν T g ν ,   R d ν Δ ν   h ν ,   R T g ν ,   R d ν , S K Δ ν   h ν ,   R T g ν ,   R d ν + 1 - S K Δ ν   l ν T g ν ,   R d ν Δ ν   l ν T g ν ,   R d ν ,
1 - Δ ν   l ν T g ν ,   R d ν Δ ν   h ν T g ν ,   R d ν E 1 Δ ν   h ν T g ν ,   R d ν Δ ν   l ν T g ν ,   R d ν - 1 ,
Δ ν d d R   h ν ,   R T g ν ,   R d ν Δ ν   h ν ,   R T g ν ,   R d ν E 2 Δ ν d d R   h ν ,   R T g ν ,   R d ν Δ ν   l ν ,   R T g ν ,   R d ν .

Metrics