Abstract

An all-solid-state laser transmitter for a water-vapor and temperature differential absorption lidar (DIAL) system in the near infrared is introduced. The laser system is based on a master–slave configuration. As the slave laser a Q-switched unidirectional alexandrite ring laser is used, which is injection seeded by the master laser, a cw Ti:sapphire ring laser. It is demonstrated that this laser system has, what is to my knowledge, the highest frequency stability (15 MHz rms), narrowest bandwidth (<40 MHz), and highest spectral purity (>99.99%) of all the laser transmitters developed to date in the near infrared. These specifications fulfill the requirements for water-vapor measurements with an error caused by laser properties of <5% and temperature measurements with an error caused by laser properties of <1 K in the whole troposphere. The specifications are maintained during long-term operation in the field. The single-mode operation of this laser system makes the narrow-band detection of the DIAL backscatter signal possible. Thus the system has the potential to be used for accurate temperature measurements and for simultaneous DIAL and Doppler wind measurements.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
    [CrossRef]
  2. E. E. Remsberg, L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
    [CrossRef] [PubMed]
  3. G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
    [CrossRef]
  4. C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
    [CrossRef]
  5. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
    [CrossRef] [PubMed]
  6. W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
    [CrossRef]
  7. J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
    [CrossRef]
  8. L. Bengtsson, “Problems of using satellite information in numerical weather prediction,” in Proceedings of the Technical Conference on Use of Data from Meteorological Satellites, B. Batrick, ed., European Space Agency publication SP-143 (European Space Research and Technology Center, Noordwijk, The Netherlands, 1979), pp. 87–100.
  9. J. B. Mason, “Lidar measurements of temperature: a new approach,” Appl. Opt. 14, 76–78 (1975).
    [PubMed]
  10. C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
    [CrossRef]
  11. F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Oceanic Technol. 10, 165–179 (1993).
    [CrossRef]
  12. V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
    [CrossRef]
  13. V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
    [CrossRef] [PubMed]
  14. V. Wulfmeyer, J. Bösenberg, “Water vapor DIAL measurements using an injection-seeded alexandrite ring laser,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 215–217.
  15. V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
    [CrossRef] [PubMed]
  16. “Report of the first workshop of the World Climate Research Program/Global Energy and Water Cycle Experiment Water Vapour Project (GVaP),” 12–15 November 1996, World Climate Research Programme Informal Report No. 8 (World Meteorological Organization, Geneva, Switzerland, 1997).
  17. V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.
  18. R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.
  19. C. Werner, H. Herrmann, “Lidar measurements of the vertical absolute humidity distribution in the boundary layer,” J. Appl. Meteorol. 20, 476–481 (1981).
    [CrossRef]
  20. V. V. Zuev, V. E. Zuev, Y. S. Makushin, V. N. Marichev, A. A. Mitsel, “Laser sounding of atmospheric humidity: experiment,” Appl. Opt. 22, 3742–3746 (1983).
    [CrossRef] [PubMed]
  21. E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
    [CrossRef]
  22. P. W. Baker, “Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar,” Appl. Opt. 22, 2257–2264 (1983).
    [CrossRef] [PubMed]
  23. R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
    [CrossRef] [PubMed]
  24. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
    [CrossRef] [PubMed]
  25. A. W. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Performance characteristics of a compact, RF-excited, MOPA CO2 Doppler lidar,” presented at the Ninth Conference on Coherent Laser Radar, 23–27 June 1997, Linkoping, Sweden, Abstract, pp. 148–150.
  26. E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3482 (1979).
    [CrossRef] [PubMed]
  27. C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
    [CrossRef]
  28. J. Bösenberg, “A DIAL system for high resolution water vapor measurements in the troposphere,” in Laser and Optical Remote Sensing: Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 22–25.
  29. G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
    [CrossRef] [PubMed]
  30. J. Bösenberg, “A differential absorption lidar system for high resolution water vapor measurements in the troposphere,” Report No. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).
  31. N. Menyuk, D. K. Killinger, “Atmospheric remote sensing of water vapor, HCl, and CH4 using a continuously tunable Co:MgF2 laser,” Appl. Opt. 26, 3061–3065 (1987).
    [CrossRef] [PubMed]
  32. S. Cha, K. P. Chan, D. K. Killinger, “Tunable 2.1-μm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30, 3938–3943 (1991).
    [CrossRef] [PubMed]
  33. D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
    [CrossRef] [PubMed]
  34. N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
    [CrossRef] [PubMed]
  35. P. Ponsardin, N. S. Higdon, B. E. Grossmann, E. V. Browell, “Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system,” Appl. Opt. 33, 6439–6450 (1994).
    [CrossRef] [PubMed]
  36. P. Quaglia, “Etude et réalisation du lidar aéroporté pour la mesure de la vapeur d’eau,” Ph.D. dissertation (University of Paris VI, Paris, France, 1995).
  37. D. Bruneau, T. A. des Lions, P. Quaglia, J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994).
    [CrossRef] [PubMed]
  38. D. Bruneau, Service d’Aéronomie du Centre National de la Recherche Scientifique, 75252 Paris, France (personal communication, 1996).
  39. T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.
  40. T. H. Chyba, P. Ponsardin, E. V. Browell, “Alexandrite laser injection-seeded by an external cavity laser diode for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 53–55.
  41. E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.
  42. A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.
  43. S. A. Kooi, S. Ismail, E. V. Browell, W. M. Hall, M. B. Clayton, V. G. Brackett, “Real-time and post-mission analysis of the Lidar Atmospheric Sensing Experiment (LASE) data,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E20, p. 53.
  44. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
    [CrossRef]
  45. H. S. Lee, A. Notari, “Narrow-band alexandrite laser for DIAL and other lidar systems,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, paper 26PB1, pp. 271–274.
  46. C. R. Prasad, G. K. Schwemmer, A. Notari, J. Famiglietti, “Measurement of spectral purity of an injection seeded alexandrite ring laser for a DIAL temperature lidar,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, paper 26PB20, pp. 329–332.
  47. S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, R. J. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
    [CrossRef]
  48. C. J. Grund, “High resolution Doppler lidar measurements of wind and turbulence,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 235–238.
  49. St. Schmitz, “Entwicklung eines schmalbandigen und durchstimmbaren Alexandrit-Lasers für ein mobiles Na-Temperatur-Lidar,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).
  50. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–132 (1986).
    [CrossRef]
  51. P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
    [CrossRef]
  52. F. Jansen, “Stabilisierung eines Titan-Saphir-Lasers in einem DIAL-System für Wasserdampfmessungen,” diploma thesis (Technical College Hamburg-Bergedorf, Hamburg, Germany, 1997).
  53. W. Vassen, C. Zimmermann, R. Kallenbach, T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
    [CrossRef]
  54. A. Burneau, B. Humbert, “Temperature effects on a tilted birefringent filter in a tunable laser: a limitation for Raman spectroscopy,” J. Appl. Phys. 66, 5702–5706 (1989).
    [CrossRef]
  55. J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4, 182–183 (1979).
    [CrossRef] [PubMed]
  56. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
    [CrossRef]
  57. K. P. Driedger, W. Krause, H. Weber, “Average refractive power of an alexandrite laser rod,” Opt. Commun. 57, 403–406 (1986).
    [CrossRef]
  58. J. P. Lörtscher, J. Steffen, G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
    [CrossRef]
  59. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell. Syst. Tech. J. 44, 455–494 (1965).
  60. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
    [CrossRef] [PubMed]
  61. V. Magni, “Multielement stable resonators containing a variable lens,” J. Opt. Soc. Am. A 4, 1962–1969 (1987).
    [CrossRef]
  62. S. DeSilvestri, P. Laporta, V. Magni, “Rod thermal lensing effects in solid-state laser ring resonators,” Opt. Commun. 65, 373–376 (1988).
    [CrossRef]
  63. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  64. R. Hauck, H. P. Kortz, H. Weber, “Misalignment sensitivity of optical resonators,” Appl. Opt. 19, 598–601 (1980).
    [CrossRef] [PubMed]
  65. J. E. Murray, W. H. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
    [CrossRef]
  66. Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
    [CrossRef]
  67. L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985).
    [CrossRef] [PubMed]
  68. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
    [CrossRef] [PubMed]
  69. S. W. Henderson, E. H. Yuen, E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
    [CrossRef] [PubMed]
  70. T. D. Raymond, A. V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991).
    [CrossRef] [PubMed]
  71. Ch. E. Hamilton, “Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision,” Opt. Lett. 17, 728–730 (1992).
    [CrossRef] [PubMed]
  72. G. Y. Yin, A. Kasapi, M. Jain, A. Merriman, “Tunable pulsed SLM Ti:sapphire laser injection-seeded outside the gain peak region,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 118.
  73. S. Schmitz, U. von Zahn, J. C. Walling, F. G. Fisanick, D. F. Heller, “Diode injection-seeded, solid-state laser sources for sodium lidar and guidestars,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 245.
  74. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
    [CrossRef] [PubMed]
  75. J. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–998 (1981).
    [CrossRef] [PubMed]
  76. N. P. Barnes, J. C. Barnes, “Injection seeding I: Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
    [CrossRef]
  77. J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
    [CrossRef]
  78. S. Lehmann, J. Bösenberg, “A water vapour DIAL system using diode pumped Nd:YAG lasers,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 309–312.
  79. C. Nagasawa, M. Abo, “An injection seeded flash-lamp pumped Ti:sapphire laser for potassium lidar and water vapor DIAL,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E31, p. 58.
  80. J. Yu, M. Douard, B. Vezin, P. Rambaldi, J. P. Wolf, “Injection seeding of a flashlamp pumped Ti:sapphire laser for lidar applications,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 439–442.
  81. J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.
  82. G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, abstract E30, p. 58.
  83. A. Fix, G. Ehret, “Injection seeded optical parametric oscillator system for water vapor DIAL measurements,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 313–316.
  84. T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 451–454.
  85. A. J. Henderson, S. Mathur, G. R. Prasad, S. X. Li, S. Lee, “Water vapor measurements with use of OPO-based differential absorption lidar,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 187–188.
  86. K. D. Zhang, J. Lewis, E. Margalith, “Diode-seeded single-longitudinal-mode OPO for remote sensing (DIAL) of water vapor,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 188.
  87. T. D. Wilkerson, J. A. McKay, “Implications of new alexandrite ring laser technology for spaceborne lidar (aerosol backscatter, water vapor, Doppler winds),” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 217–220.

1998 (2)

1996 (1)

1995 (1)

1994 (3)

1993 (5)

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, R. J. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
[CrossRef] [PubMed]

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Oceanic Technol. 10, 165–179 (1993).
[CrossRef]

N. P. Barnes, J. C. Barnes, “Injection seeding I: Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
[CrossRef]

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

1992 (1)

1991 (5)

1990 (1)

W. Vassen, C. Zimmermann, R. Kallenbach, T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

1989 (3)

1988 (2)

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

S. DeSilvestri, P. Laporta, V. Magni, “Rod thermal lensing effects in solid-state laser ring resonators,” Opt. Commun. 65, 373–376 (1988).
[CrossRef]

1987 (4)

1986 (4)

1985 (1)

1984 (2)

Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
[CrossRef] [PubMed]

1983 (2)

1982 (2)

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

1981 (3)

C. Werner, H. Herrmann, “Lidar measurements of the vertical absolute humidity distribution in the boundary layer,” J. Appl. Meteorol. 20, 476–481 (1981).
[CrossRef]

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

J. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–998 (1981).
[CrossRef] [PubMed]

1980 (4)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

R. Hauck, H. P. Kortz, H. Weber, “Misalignment sensitivity of optical resonators,” Appl. Opt. 19, 598–601 (1980).
[CrossRef] [PubMed]

J. E. Murray, W. H. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef]

1979 (2)

1978 (1)

1976 (1)

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

1975 (2)

J. B. Mason, “Lidar measurements of temperature: a new approach,” Appl. Opt. 14, 76–78 (1975).
[PubMed]

J. P. Lörtscher, J. Steffen, G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
[CrossRef]

1974 (1)

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

1965 (1)

H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell. Syst. Tech. J. 44, 455–494 (1965).

Abo, M.

C. Nagasawa, M. Abo, “An injection seeded flash-lamp pumped Ti:sapphire laser for potassium lidar and water vapor DIAL,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E31, p. 58.

Allen, R. J.

Altmann, J.

Antill, C. W.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Baker, P. W.

Barnes, J. C.

N. P. Barnes, J. C. Barnes, “Injection seeding I: Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
[CrossRef]

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Barnes, N. P.

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

N. P. Barnes, J. C. Barnes, “Injection seeding I: Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
[CrossRef]

Baumgart, R.

Beernik, K. J.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, abstract E30, p. 58.

Bengtsson, L.

L. Bengtsson, “Problems of using satellite information in numerical weather prediction,” in Proceedings of the Technical Conference on Use of Data from Meteorological Satellites, B. Batrick, ed., European Space Agency publication SP-143 (European Space Research and Technology Center, Noordwijk, The Netherlands, 1979), pp. 87–100.

Bösenberg, J.

J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
[CrossRef]

V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Oceanic Technol. 10, 165–179 (1993).
[CrossRef]

V. Wulfmeyer, J. Bösenberg, “Water vapor DIAL measurements using an injection-seeded alexandrite ring laser,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 215–217.

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

J. Bösenberg, “A DIAL system for high resolution water vapor measurements in the troposphere,” in Laser and Optical Remote Sensing: Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 22–25.

J. Bösenberg, “A differential absorption lidar system for high resolution water vapor measurements in the troposphere,” Report No. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).

S. Lehmann, J. Bösenberg, “A water vapour DIAL system using diode pumped Nd:YAG lasers,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 309–312.

Brackett, V. G.

S. A. Kooi, S. Ismail, E. V. Browell, W. M. Hall, M. B. Clayton, V. G. Brackett, “Real-time and post-mission analysis of the Lidar Atmospheric Sensing Experiment (LASE) data,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E20, p. 53.

Brewer, A. W.

A. W. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Performance characteristics of a compact, RF-excited, MOPA CO2 Doppler lidar,” presented at the Ninth Conference on Coherent Laser Radar, 23–27 June 1997, Linkoping, Sweden, Abstract, pp. 148–150.

Brothers, A. M.

Browell, E. V.

N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
[CrossRef] [PubMed]

P. Ponsardin, N. S. Higdon, B. E. Grossmann, E. V. Browell, “Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system,” Appl. Opt. 33, 6439–6450 (1994).
[CrossRef] [PubMed]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3482 (1979).
[CrossRef] [PubMed]

T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.

S. A. Kooi, S. Ismail, E. V. Browell, W. M. Hall, M. B. Clayton, V. G. Brackett, “Real-time and post-mission analysis of the Lidar Atmospheric Sensing Experiment (LASE) data,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E20, p. 53.

T. H. Chyba, P. Ponsardin, E. V. Browell, “Alexandrite laser injection-seeded by an external cavity laser diode for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 53–55.

E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Brown, K. E.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Bruneau, D.

Bruns, D. L.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, R. J. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Burneau, A.

A. Burneau, B. Humbert, “Temperature effects on a tilted birefringent filter in a tunable laser: a limitation for Raman spectroscopy,” J. Appl. Phys. 66, 5702–5706 (1989).
[CrossRef]

Butler, C. F.

Byer, R. L.

Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

Cahen, C.

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

Carter, A. F.

Cazeneuve, H.

Cha, S.

Chan, K. P.

Chyba, T. H.

N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
[CrossRef] [PubMed]

T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.

T. H. Chyba, P. Ponsardin, E. V. Browell, “Alexandrite laser injection-seeded by an external cavity laser diode for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 53–55.

Clayton, M. B.

S. A. Kooi, S. Ismail, E. V. Browell, W. M. Hall, M. B. Clayton, V. G. Brackett, “Real-time and post-mission analysis of the Lidar Atmospheric Sensing Experiment (LASE) data,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E20, p. 53.

Coleman, J. J.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, abstract E30, p. 58.

des Lions, T. A.

DeSilvestri, S.

S. DeSilvestri, P. Laporta, V. Magni, “Rod thermal lensing effects in solid-state laser ring resonators,” Opt. Commun. 65, 373–376 (1988).
[CrossRef]

DeYoung, R. J.

T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.

Dombrowski, M.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Douard, M.

J. Yu, M. Douard, B. Vezin, P. Rambaldi, J. P. Wolf, “Injection seeding of a flashlamp pumped Ti:sapphire laser for lidar applications,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 439–442.

Dragic, P. D.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, abstract E30, p. 58.

Driedger, K. P.

K. P. Driedger, W. Krause, H. Weber, “Average refractive power of an alexandrite laser rod,” Opt. Commun. 57, 403–406 (1986).
[CrossRef]

Eberhard, W. L.

A. W. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Performance characteristics of a compact, RF-excited, MOPA CO2 Doppler lidar,” presented at the Ninth Conference on Coherent Laser Radar, 23–27 June 1997, Linkoping, Sweden, Abstract, pp. 148–150.

Edwards, W.

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

Edwards, W. C.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Ehret, G.

G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
[CrossRef] [PubMed]

A. Fix, G. Ehret, “Injection seeded optical parametric oscillator system for water vapor DIAL measurements,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 313–316.

Famiglietti, J.

C. R. Prasad, G. K. Schwemmer, A. Notari, J. Famiglietti, “Measurement of spectral purity of an injection seeded alexandrite ring laser for a DIAL temperature lidar,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, paper 26PB20, pp. 329–332.

Fisanick, F. G.

S. Schmitz, U. von Zahn, J. C. Walling, F. G. Fisanick, D. F. Heller, “Diode injection-seeded, solid-state laser sources for sodium lidar and guidestars,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 245.

Fix, A.

A. Fix, G. Ehret, “Injection seeded optical parametric oscillator system for water vapor DIAL measurements,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 313–316.

Flamant, P.

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

Fry, E. S.

Gardiner, T. D.

T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 451–454.

Giuliani, G.

Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

Göktas, F.

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

Gordley, L. L.

Grant, W. B.

Grossmann, B. E.

Grund, C.

J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.

Grund, C. J.

C. J. Grund, “High resolution Doppler lidar measurements of wind and turbulence,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 235–238.

Hake, R. D.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Hale, C. P.

Hall, W. M.

S. A. Kooi, S. Ismail, E. V. Browell, W. M. Hall, M. B. Clayton, V. G. Brackett, “Real-time and post-mission analysis of the Lidar Atmospheric Sensing Experiment (LASE) data,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E20, p. 53.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Hamilton, Ch. E.

Hannon, S. M.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, R. J. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Hänsch, T. W.

W. Vassen, C. Zimmermann, R. Kallenbach, T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

Hardesty, R. M.

R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
[CrossRef] [PubMed]

A. W. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Performance characteristics of a compact, RF-excited, MOPA CO2 Doppler lidar,” presented at the Ninth Conference on Coherent Laser Radar, 23–27 June 1997, Linkoping, Sweden, Abstract, pp. 148–150.

J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.

Hauck, R.

Hawley, J. G.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Heller, D. F.

S. Schmitz, U. von Zahn, J. C. Walling, F. G. Fisanick, D. F. Heller, “Diode injection-seeded, solid-state laser sources for sodium lidar and guidestars,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 245.

Henderson, A. J.

A. J. Henderson, S. Mathur, G. R. Prasad, S. X. Li, S. Lee, “Water vapor measurements with use of OPO-based differential absorption lidar,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 187–188.

Henderson, S. W.

Herrmann, H.

C. Werner, H. Herrmann, “Lidar measurements of the vertical absolute humidity distribution in the boundary layer,” J. Appl. Meteorol. 20, 476–481 (1981).
[CrossRef]

Herziger, G.

J. P. Lörtscher, J. Steffen, G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
[CrossRef]

Heuser, A. W.

Higdon, N. S.

Hirsch, L.

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

Huffaker, A. V.

Huffaker, R. M.

Humbert, B.

A. Burneau, B. Humbert, “Temperature effects on a tilted birefringent filter in a tunable laser: a limitation for Raman spectroscopy,” J. Appl. Phys. 66, 5702–5706 (1989).
[CrossRef]

Ismail, S.

N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
[CrossRef] [PubMed]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

S. A. Kooi, S. Ismail, E. V. Browell, W. M. Hall, M. B. Clayton, V. G. Brackett, “Real-time and post-mission analysis of the Lidar Atmospheric Sensing Experiment (LASE) data,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E20, p. 53.

E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Jain, M.

G. Y. Yin, A. Kasapi, M. Jain, A. Merriman, “Tunable pulsed SLM Ti:sapphire laser injection-seeded outside the gain peak region,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 118.

Jansen, F.

F. Jansen, “Stabilisierung eines Titan-Saphir-Lasers in einem DIAL-System für Wasserdampfmessungen,” diploma thesis (Technical College Hamburg-Bergedorf, Hamburg, Germany, 1997).

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

Jenssen, H. P.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4, 182–183 (1979).
[CrossRef] [PubMed]

Jones, I. W.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Kagann, R. H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Kallenbach, R.

W. Vassen, C. Zimmermann, R. Kallenbach, T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

Kasapi, A.

G. Y. Yin, A. Kasapi, M. Jain, A. Merriman, “Tunable pulsed SLM Ti:sapphire laser injection-seeded outside the gain peak region,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 118.

Kavaya, M. J.

Kiemle, C.

Killinger, D. K.

Kogelnik, H.

H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell. Syst. Tech. J. 44, 455–494 (1965).

Kooi, S. A.

S. A. Kooi, S. Ismail, E. V. Browell, W. M. Hall, M. B. Clayton, V. G. Brackett, “Real-time and post-mission analysis of the Lidar Atmospheric Sensing Experiment (LASE) data,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E20, p. 53.

Korb, C. L.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

Kortz, H. P.

Krause, W.

K. P. Driedger, W. Krause, H. Weber, “Average refractive power of an alexandrite laser rod,” Opt. Commun. 57, 403–406 (1986).
[CrossRef]

Laporta, P.

S. DeSilvestri, P. Laporta, V. Magni, “Rod thermal lensing effects in solid-state laser ring resonators,” Opt. Commun. 65, 373–376 (1988).
[CrossRef]

Lee, S.

A. J. Henderson, S. Mathur, G. R. Prasad, S. X. Li, S. Lee, “Water vapor measurements with use of OPO-based differential absorption lidar,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 187–188.

Lehmann, S.

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

S. Lehmann, J. Bösenberg, “A water vapour DIAL system using diode pumped Nd:YAG lasers,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 309–312.

Lewis, J.

K. D. Zhang, J. Lewis, E. Margalith, “Diode-seeded single-longitudinal-mode OPO for remote sensing (DIAL) of water vapor,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 188.

Li, S. X.

A. J. Henderson, S. Mathur, G. R. Prasad, S. X. Li, S. Lee, “Water vapor measurements with use of OPO-based differential absorption lidar,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 187–188.

Little, A. D.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Little, L. M.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, abstract E30, p. 58.

Lörtscher, J. P.

J. P. Lörtscher, J. Steffen, G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
[CrossRef]

Loth, C.

Lowdermilk, W. H.

J. E. Murray, W. H. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

Luck, W. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Machol, J.

J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.

Magee, J. R.

Magee, R. J.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, R. J. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Magni, V.

Makushin, Y. S.

Margalith, E.

K. D. Zhang, J. Lewis, E. Margalith, “Diode-seeded single-longitudinal-mode OPO for remote sensing (DIAL) of water vapor,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 188.

Margolis, J. S.

Marichev, V. N.

Mason, J. B.

Mathur, S.

A. J. Henderson, S. Mathur, G. R. Prasad, S. X. Li, S. Lee, “Water vapor measurements with use of OPO-based differential absorption lidar,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 187–188.

Mayo, M. N.

Mayor, S. D.

McIlrath, T. J.

McKay, J. A.

T. D. Wilkerson, J. A. McKay, “Implications of new alexandrite ring laser technology for spaceborne lidar (aerosol backscatter, water vapor, Doppler winds),” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 217–220.

Mégie, G.

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef]

Menyuk, N.

Menzies, R. T.

Merriman, A.

G. Y. Yin, A. Kasapi, M. Jain, A. Merriman, “Tunable pulsed SLM Ti:sapphire laser injection-seeded outside the gain peak region,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 118.

Milrod, J.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Milton, M. J. T.

T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 451–454.

Mitsel, A. A.

Molero, F.

T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 451–454.

Moore, A. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Morris, R. C.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4, 182–183 (1979).
[CrossRef] [PubMed]

Moulton, P. F.

Murray, E. R.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Murray, J. E.

J. E. Murray, W. H. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

Nagasawa, C.

C. Nagasawa, M. Abo, “An injection seeded flash-lamp pumped Ti:sapphire laser for potassium lidar and water vapor DIAL,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E31, p. 58.

Notari, A.

C. R. Prasad, G. K. Schwemmer, A. Notari, J. Famiglietti, “Measurement of spectral purity of an injection seeded alexandrite ring laser for a DIAL temperature lidar,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, paper 26PB20, pp. 329–332.

O’Dell, E. W.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4, 182–183 (1979).
[CrossRef] [PubMed]

Papen, G. C.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, abstract E30, p. 58.

Park, Y. K.

Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

Pelon, J.

Peters, G.

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

Peterson, O. G.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4, 182–183 (1979).
[CrossRef] [PubMed]

Petway, L. B.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Ponsardin, P.

N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
[CrossRef] [PubMed]

P. Ponsardin, N. S. Higdon, B. E. Grossmann, E. V. Browell, “Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system,” Appl. Opt. 33, 6439–6450 (1994).
[CrossRef] [PubMed]

T. H. Chyba, P. Ponsardin, E. V. Browell, “Alexandrite laser injection-seeded by an external cavity laser diode for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 53–55.

T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.

Prasad, C. R.

C. R. Prasad, G. K. Schwemmer, A. Notari, J. Famiglietti, “Measurement of spectral purity of an injection seeded alexandrite ring laser for a DIAL temperature lidar,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, paper 26PB20, pp. 329–332.

Prasad, G. R.

A. J. Henderson, S. Mathur, G. R. Prasad, S. X. Li, S. Lee, “Water vapor measurements with use of OPO-based differential absorption lidar,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 187–188.

Quaglia, P.

D. Bruneau, T. A. des Lions, P. Quaglia, J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994).
[CrossRef] [PubMed]

P. Quaglia, “Etude et réalisation du lidar aéroporté pour la mesure de la vapeur d’eau,” Ph.D. dissertation (University of Paris VI, Paris, France, 1995).

Rahn, L. A.

Rambaldi, P.

J. Yu, M. Douard, B. Vezin, P. Rambaldi, J. P. Wolf, “Injection seeding of a flashlamp pumped Ti:sapphire laser for lidar applications,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 439–442.

Raymond, T. D.

Remsberg, E. E.

Renger, W.

Rye, B.

J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.

Rye, B. J.

A. W. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Performance characteristics of a compact, RF-excited, MOPA CO2 Doppler lidar,” presented at the Ninth Conference on Coherent Laser Radar, 23–27 June 1997, Linkoping, Sweden, Abstract, pp. 148–150.

Schmitz, S.

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

S. Schmitz, U. von Zahn, J. C. Walling, F. G. Fisanick, D. F. Heller, “Diode injection-seeded, solid-state laser sources for sodium lidar and guidestars,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 245.

Schmitz, St.

St. Schmitz, “Entwicklung eines schmalbandigen und durchstimmbaren Alexandrit-Lasers für ein mobiles Na-Temperatur-Lidar,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).

Schotland, R. M.

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.

Schulz, P. A.

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

Schwemmer, G. K.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

C. R. Prasad, G. K. Schwemmer, A. Notari, J. Famiglietti, “Measurement of spectral purity of an injection seeded alexandrite ring laser for a DIAL temperature lidar,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, paper 26PB20, pp. 329–332.

Senff, C.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Simmet, G.

Smith, A. V.

Steffen, J.

J. P. Lörtscher, J. Steffen, G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
[CrossRef]

Suni, P. J.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, R. J. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Theopold, F. A.

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Oceanic Technol. 10, 165–179 (1993).
[CrossRef]

Tratt, D. M.

Van der Laan, J. E.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Vassen, W.

W. Vassen, C. Zimmermann, R. Kallenbach, T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

Vezin, B.

J. Yu, M. Douard, B. Vezin, P. Rambaldi, J. P. Wolf, “Injection seeding of a flashlamp pumped Ti:sapphire laser for lidar applications,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 439–442.

von Zahn, U.

S. Schmitz, U. von Zahn, J. C. Walling, F. G. Fisanick, D. F. Heller, “Diode injection-seeded, solid-state laser sources for sodium lidar and guidestars,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 245.

Walden, H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Walling, J. C.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4, 182–183 (1979).
[CrossRef] [PubMed]

S. Schmitz, U. von Zahn, J. C. Walling, F. G. Fisanick, D. F. Heller, “Diode injection-seeded, solid-state laser sources for sodium lidar and guidestars,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 245.

Wang, L. G.

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

Weber, H.

K. P. Driedger, W. Krause, H. Weber, “Average refractive power of an alexandrite laser rod,” Opt. Commun. 57, 403–406 (1986).
[CrossRef]

R. Hauck, H. P. Kortz, H. Weber, “Misalignment sensitivity of optical resonators,” Appl. Opt. 19, 598–601 (1980).
[CrossRef] [PubMed]

Weitkamp, C.

Weng, C. Y.

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

Werner, C.

C. Werner, H. Herrmann, “Lidar measurements of the vertical absolute humidity distribution in the boundary layer,” J. Appl. Meteorol. 20, 476–481 (1981).
[CrossRef]

Wilkerson, T. D.

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3482 (1979).
[CrossRef] [PubMed]

T. D. Wilkerson, J. A. McKay, “Implications of new alexandrite ring laser technology for spaceborne lidar (aerosol backscatter, water vapor, Doppler winds),” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 217–220.

Wolf, J. P.

J. Yu, M. Douard, B. Vezin, P. Rambaldi, J. P. Wolf, “Injection seeding of a flashlamp pumped Ti:sapphire laser for lidar applications,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 439–442.

Woods, P. T.

T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 451–454.

Wulfmeyer, V.

V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, “Water vapor DIAL measurements using an injection-seeded alexandrite ring laser,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 215–217.

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

Yin, G. Y.

G. Y. Yin, A. Kasapi, M. Jain, A. Merriman, “Tunable pulsed SLM Ti:sapphire laser injection-seeded outside the gain peak region,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 118.

Yu, J.

J. Yu, M. Douard, B. Vezin, P. Rambaldi, J. P. Wolf, “Injection seeding of a flashlamp pumped Ti:sapphire laser for lidar applications,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 439–442.

Yuen, E. H.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, R. J. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

S. W. Henderson, E. H. Yuen, E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
[CrossRef] [PubMed]

Zhang, K. D.

K. D. Zhang, J. Lewis, E. Margalith, “Diode-seeded single-longitudinal-mode OPO for remote sensing (DIAL) of water vapor,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 188.

Zimmermann, C.

W. Vassen, C. Zimmermann, R. Kallenbach, T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

Zuev, V. E.

Zuev, V. V.

Appl. Opt. (22)

J. B. Mason, “Lidar measurements of temperature: a new approach,” Appl. Opt. 14, 76–78 (1975).
[PubMed]

E. E. Remsberg, L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
[CrossRef] [PubMed]

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3482 (1979).
[CrossRef] [PubMed]

R. Hauck, H. P. Kortz, H. Weber, “Misalignment sensitivity of optical resonators,” Appl. Opt. 19, 598–601 (1980).
[CrossRef] [PubMed]

G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef]

J. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–998 (1981).
[CrossRef] [PubMed]

P. W. Baker, “Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar,” Appl. Opt. 22, 2257–2264 (1983).
[CrossRef] [PubMed]

V. V. Zuev, V. E. Zuev, Y. S. Makushin, V. N. Marichev, A. A. Mitsel, “Laser sounding of atmospheric humidity: experiment,” Appl. Opt. 22, 3742–3746 (1983).
[CrossRef] [PubMed]

R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
[CrossRef] [PubMed]

V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
[CrossRef] [PubMed]

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, “Atmospheric remote sensing of water vapor, HCl, and CH4 using a continuously tunable Co:MgF2 laser,” Appl. Opt. 26, 3061–3065 (1987).
[CrossRef] [PubMed]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

S. Cha, K. P. Chan, D. K. Killinger, “Tunable 2.1-μm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30, 3938–3943 (1991).
[CrossRef] [PubMed]

G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
[CrossRef] [PubMed]

D. Bruneau, T. A. des Lions, P. Quaglia, J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994).
[CrossRef] [PubMed]

N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
[CrossRef] [PubMed]

P. Ponsardin, N. S. Higdon, B. E. Grossmann, E. V. Browell, “Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system,” Appl. Opt. 33, 6439–6450 (1994).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
[CrossRef]

L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Bell. Syst. Tech. J. (1)

H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell. Syst. Tech. J. 44, 455–494 (1965).

IEEE J. Quantum Electron. (5)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

N. P. Barnes, J. C. Barnes, “Injection seeding I: Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
[CrossRef]

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (1)

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, R. J. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

J. Appl. Meteorol. (4)

C. Werner, H. Herrmann, “Lidar measurements of the vertical absolute humidity distribution in the boundary layer,” J. Appl. Meteorol. 20, 476–481 (1981).
[CrossRef]

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

J. Appl. Phys. (2)

A. Burneau, B. Humbert, “Temperature effects on a tilted birefringent filter in a tunable laser: a limitation for Raman spectroscopy,” J. Appl. Phys. 66, 5702–5706 (1989).
[CrossRef]

J. E. Murray, W. H. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Oceanic Technol. 10, 165–179 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

Opt. Commun. (3)

W. Vassen, C. Zimmermann, R. Kallenbach, T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

K. P. Driedger, W. Krause, H. Weber, “Average refractive power of an alexandrite laser rod,” Opt. Commun. 57, 403–406 (1986).
[CrossRef]

S. DeSilvestri, P. Laporta, V. Magni, “Rod thermal lensing effects in solid-state laser ring resonators,” Opt. Commun. 65, 373–376 (1988).
[CrossRef]

Opt. Eng. (1)

W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
[CrossRef]

Opt. Lett. (8)

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4, 182–183 (1979).
[CrossRef] [PubMed]

S. W. Henderson, E. H. Yuen, E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
[CrossRef] [PubMed]

M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

T. D. Raymond, A. V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991).
[CrossRef] [PubMed]

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
[CrossRef] [PubMed]

Ch. E. Hamilton, “Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision,” Opt. Lett. 17, 728–730 (1992).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

J. P. Lörtscher, J. Steffen, G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
[CrossRef]

Rev. Sci. Instrum. (1)

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Other (33)

H. S. Lee, A. Notari, “Narrow-band alexandrite laser for DIAL and other lidar systems,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, paper 26PB1, pp. 271–274.

C. R. Prasad, G. K. Schwemmer, A. Notari, J. Famiglietti, “Measurement of spectral purity of an injection seeded alexandrite ring laser for a DIAL temperature lidar,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, paper 26PB20, pp. 329–332.

A. W. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Performance characteristics of a compact, RF-excited, MOPA CO2 Doppler lidar,” presented at the Ninth Conference on Coherent Laser Radar, 23–27 June 1997, Linkoping, Sweden, Abstract, pp. 148–150.

C. J. Grund, “High resolution Doppler lidar measurements of wind and turbulence,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 235–238.

St. Schmitz, “Entwicklung eines schmalbandigen und durchstimmbaren Alexandrit-Lasers für ein mobiles Na-Temperatur-Lidar,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).

J. Bösenberg, “A differential absorption lidar system for high resolution water vapor measurements in the troposphere,” Report No. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).

P. Quaglia, “Etude et réalisation du lidar aéroporté pour la mesure de la vapeur d’eau,” Ph.D. dissertation (University of Paris VI, Paris, France, 1995).

F. Jansen, “Stabilisierung eines Titan-Saphir-Lasers in einem DIAL-System für Wasserdampfmessungen,” diploma thesis (Technical College Hamburg-Bergedorf, Hamburg, Germany, 1997).

L. Bengtsson, “Problems of using satellite information in numerical weather prediction,” in Proceedings of the Technical Conference on Use of Data from Meteorological Satellites, B. Batrick, ed., European Space Agency publication SP-143 (European Space Research and Technology Center, Noordwijk, The Netherlands, 1979), pp. 87–100.

V. Wulfmeyer, J. Bösenberg, “Water vapor DIAL measurements using an injection-seeded alexandrite ring laser,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 215–217.

“Report of the first workshop of the World Climate Research Program/Global Energy and Water Cycle Experiment Water Vapour Project (GVaP),” 12–15 November 1996, World Climate Research Programme Informal Report No. 8 (World Meteorological Organization, Geneva, Switzerland, 1997).

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.

J. Bösenberg, “A DIAL system for high resolution water vapor measurements in the troposphere,” in Laser and Optical Remote Sensing: Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 22–25.

D. Bruneau, Service d’Aéronomie du Centre National de la Recherche Scientifique, 75252 Paris, France (personal communication, 1996).

T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.

T. H. Chyba, P. Ponsardin, E. V. Browell, “Alexandrite laser injection-seeded by an external cavity laser diode for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 53–55.

E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

S. A. Kooi, S. Ismail, E. V. Browell, W. M. Hall, M. B. Clayton, V. G. Brackett, “Real-time and post-mission analysis of the Lidar Atmospheric Sensing Experiment (LASE) data,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E20, p. 53.

S. Lehmann, J. Bösenberg, “A water vapour DIAL system using diode pumped Nd:YAG lasers,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 309–312.

C. Nagasawa, M. Abo, “An injection seeded flash-lamp pumped Ti:sapphire laser for potassium lidar and water vapor DIAL,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E31, p. 58.

J. Yu, M. Douard, B. Vezin, P. Rambaldi, J. P. Wolf, “Injection seeding of a flashlamp pumped Ti:sapphire laser for lidar applications,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 439–442.

J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, abstract E30, p. 58.

A. Fix, G. Ehret, “Injection seeded optical parametric oscillator system for water vapor DIAL measurements,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 313–316.

T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 451–454.

A. J. Henderson, S. Mathur, G. R. Prasad, S. X. Li, S. Lee, “Water vapor measurements with use of OPO-based differential absorption lidar,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 187–188.

K. D. Zhang, J. Lewis, E. Margalith, “Diode-seeded single-longitudinal-mode OPO for remote sensing (DIAL) of water vapor,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 188.

T. D. Wilkerson, J. A. McKay, “Implications of new alexandrite ring laser technology for spaceborne lidar (aerosol backscatter, water vapor, Doppler winds),” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 217–220.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

G. Y. Yin, A. Kasapi, M. Jain, A. Merriman, “Tunable pulsed SLM Ti:sapphire laser injection-seeded outside the gain peak region,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 118.

S. Schmitz, U. von Zahn, J. C. Walling, F. G. Fisanick, D. F. Heller, “Diode injection-seeded, solid-state laser sources for sodium lidar and guidestars,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 245.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1

Setup of the Ti:sapphire ring laser: FL, focusing lens; R1, R2, curved resonator mirrors; BS, beam stop; PC, Pockels cell; OC, output coupler; BF, birefringent filter; AE, air gap etalon; FR, Faraday rotator; PM, mirror mounted on a piezoelectric crystal; RP, retardation plate.

Fig. 2
Fig. 2

Long-term record of the passive frequency stability of the master laser. A frequency stability of approximately 250 MHz that is due mainly to longitudinal mode hops can be specified.

Fig. 3
Fig. 3

Short-term frequency stability of the master laser shown in (a) time and (b) frequency space. In (b) a statistical analysis of the frequency fluctuations is shown. These fluctuations can be approximated by a Gaussian distribution with rms frequency stability of 15 MHz.

Fig. 4
Fig. 4

Setup of the active stabilization: BS1, BS2, beam splitters; ND1, ND2, neutral density filters; D1, D2, diffusing screens; RI, reference interferometer; REFPD, reference photodetector; IPD, interferometer photodetector; HV1, high-voltage amplifier for the piezomirror in the ring cavity; PM, piezomirror in the ring cavity; HV2, high-voltage amplifier for tuning the reference interferometer; Rhobus, data transfer.

Fig. 5
Fig. 5

Frequency stability of the long-term actively stabilized master laser shown in (a) time and (b) frequency space. Again, the frequency fluctuations can be approximated by a Gaussian distribution showing a rms frequency stability of 15 MHz.

Fig. 6
Fig. 6

Setup of the frequency switch: HV3, high-voltage amplifier; PC, Pockels cell in the ring cavity.

Fig. 7
Fig. 7

Operation of the frequency switch: (a) the change of transmission T RI of the RI that is due to the frequency variation at a repetition rate of 10 Hz and (b) frequency switching shown on an expanded scale including the voltage pulse U HV3 sent to HV3 and applied on the PC and the voltage pulse U AD sent to the computer to stop the active stabilization during the jump to the off-line frequency.

Fig. 8
Fig. 8

Setup for fine tuning the master laser to an absorption line: BS1, BS2, beam splitters; ND, neutral density filter; PD, photodetector; CH, chopper; PAC, photoacoustic cell; IB, IEEE bus controller; CO, micrometer controller; AE, air gap etalon with micrometer control; BF, birefringent filter with micrometer control.

Fig. 9
Fig. 9

Fine tuning of the master laser over two water-vapor absorption lines. The normalized signal of the lock-in amplifier is shown relative to the measured frequency of the wavemeter. The frequency scale was set to zero at the theoretical position of the absorption line. The maximum of the absorption line can be easily identified and measured using a Gaussian fit routine.

Fig. 10
Fig. 10

Setup for the measurement of the quasi steady-state thermal lens: B1, B2, apertures; POL, polarizer; P1, P2, principal planes of the thermal lens; F2, convex lens; C, computer.

Fig. 11
Fig. 11

Measurement of thermal lensing of alexandrite at two repetition rates of the flash lamps. Good agreement with the theoretical curve was achieved according to Ref. 57.

Fig. 12
Fig. 12

Setup for the measurement of the time dependence of thermal lensing: B1, B3, apertures; POL, polarizer; P1, P2, principal planes of the thermal lens; PD, photodetector; SO, storage oscilloscope.

Fig. 13
Fig. 13

Measurements of the time dependence of the thermal lensing during the flash-lamp pulse. A repetition rate of ν f = 25 Hz and a pulse energy of E p = 110.25 J was used. The signal was averaged over 20 shots. t = 0 corresponds to the start of the trigger for the flash lamps. A reduction of 3 cm of the focal length of the quasi-steady-state thermal lens during the flash-lamp pulse is clearly observed.

Fig. 14
Fig. 14

Setup of the ring resonator: P1, P2, principal planes of the thermal lens; L, concave lens.

Fig. 15
Fig. 15

Two solutions of the cavity configuration for the injection-seeded unidirectional alexandrite ring laser. The upper part of the figure shows the stability zone by a plot of the beam radius ω0 in the rod as a function of f T . The lower part plots the beam radius ω of the eigenmode in the cavity as a function of distance l from the reference plane. Solution 1 with ω1(l) and ω0,1(f T ): L* = 2.0 m, f T = 0.49 m, l 1 = 0.24 m, and f = -0.55 m. Solution 2 with ω2(l) and ω0,2(f T ): L* = 2.5 m, f T = 0.532 m, l 1 = 0.24 m, and f = -0.55 m.

Fig. 16
Fig. 16

Setup for the operation and investigation of the unidirectional alexandrite ring laser: POL1, thin-film polarizer; PC, Pockels cell; P1, P2, principal planes; L, concave lens; OC, output coupler; M1, M2, M3, high reflectors; BF, birefringent filter; OD, optical diode; BS, beam splitter; F1, F2, multimode fibers; ND, neutral density filter; PD1, fast photodetector; POL2, Glan laser polarizer; PD2, photodetector. Additionally the rotations of the plane of polarization by PC and OD are shown. The complete setup is mounted on a 0.6 m × 1.2 m super-Invar breadboard.

Fig. 17
Fig. 17

Interference fringes of a Fabry–Perot interferometer showing dual-longitudinal-mode operation of the injection-seeded unidirectional alexandrite ring laser. The resolution of the Fabry–Perot interferometer was 40 MHz and its FSR was 1.2 GHz. Two orders of the interferometer were imaged for calibration of the frequency axis. Cleary separate longitudinal modes can be resolved and one strong and one weak mode is observed.

Fig. 18
Fig. 18

Measurement of the resonance of the master laser in the slave resonator. Additionally the intensity of the flash-lamp pulse, the fluorescence of the alexandrite rod, and the position of the gate used for the SME device are shown. 1 and 2 represent the number of maxima.

Fig. 19
Fig. 19

SME device: PD2, photodetector (see Fig. 16); AMP1, AMP2, amplifiers; DIFF, differentiator; MONO, monostable multivibrator; PG, pulse generator.

Fig. 20
Fig. 20

Interference fringes of the SM alexandrite ring laser averaged over 100 shots by use of the same interferometer as in Fig. 17. A spectral width of 43 MHz was measured, which nearly corresponds to the resolution of the interferometer. An analysis on a shot-to-shot basis yielded a frequency stability of 15 MHz rms.

Fig. 21
Fig. 21

Setup for measurement of the spectral purity: HeNe, helium–neon laser; ND, neutral density filter; M1, M2, mirrors; BS, beam splitter; PD1, PD2, fast photodetectors; A1, A2, apertures.

Fig. 22
Fig. 22

Measurement of the spectral purity of the Q-switched injection-seeded alexandrite laser. The transmission of the on- and off-line laser pulses through the absorption cell was averaged over 20 shots. A spectral purity of 99.995% can be specified.

Tables (2)

Tables Icon

Table 1 Laser Transmitter Requirements for Water-Vapor (with an Overall Error of <5%) and Temperature (with an Overall Error of <1 K) DIALa

Tables Icon

Table 2 Specifications of the Master Laser with the Nd:YVO Laser as the Pump Source

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ λ BF = λ 0 3.5 × 10 - 3 ξ 0 sin 2 Δ γ cos 2 γ 0 + sin 2 Δ γ sin 2 γ 0 2 ,
1 f T x , y = c x , y ν f E p 1.5 ,
f T 1.74 × 10 4 ν f - 1 E p - 1.5   s - 1   J 1.5   m ,
f T 0.55 ν f   P p - 1.5   s 0.5   kW 1.5   m ,
f T t = d 1 P t P t - 2 R A X
P t   : =   U B 3 - U B 3 , b U W - U W , b 1 / 2 ,
ω 0 f T = 0 .
ω 0 2 = λ π L * - l 1 L * - l 1 f ,
f = L * 2 - ω 0 2 π λ f T ,
l 1 = L * 2 ± L * 2 4 + f ω 0 2 π λ - L * 1 / 2 ,
ω F = λ π ω 0 L * 2 + 2 f ω 0 2 π λ - L * 1 / 2 ,
Δ f T = 4 ω 0 2 π λ ω 0 2 π λ f T 2 - 4 4 λ π f T ω 0 2 .
L * > 2 ω 0 2 π λ 1 + ω 0 2 π 2 λ f T .
S     1 2 + π ω 0 2 λ 1 f T P - 1 f T .

Metrics