Abstract

Wavelength-division multiplexing (WDM) techniques provide many advantages for building optical interconnect networks for massively parallel processing (MPP) systems. A design for a 1024-channel network for MPP systems based on the interconnection-cached network with vertical-cavity surface-emitting laser (VCSEL) arrays with one wavelength is described. We then show how a WDM version with four different wavelengths can increase the channel density. We also show how a WDM system can reduce the fan-in loss by a factor of 4. All the VCSEL’s in each array are of the same wavelength, while different arrays use different wavelengths. We describe our experimental WDM subsystem containing four VCSEL arrays, operating at wavelengths of 843, 950, 970, and 980 nm, and three different WDM filters for multiplexing–demultiplexing. We present the operational results of the subsystem at 1 Gbit/s per channel.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Optics as an interconnect technology,” Optical Processing and Computing, H. H. Arsenault, T. Szoplik, and B. Macukow, eds. (Academic, New York, 1989), Chap. 1.
    [CrossRef]
  2. J. W. Parker, “Optical interconnection for advanced processor systems: A review of the ESPRIT II OLIVES Program,” IEEE J. Lightwave Technol. 9, 1764–1773 (1991).
    [CrossRef]
  3. R. A. Nordin, “A system perspective on digital interconnection technology,” IEEE J. Lightwave Technol. 10, 811–827 (1992).
    [CrossRef]
  4. Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
    [CrossRef]
  5. E. Schenfeld, “Massively parallel processing with optical interconnections: what can be, should be and must not be done by optics,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 16–18.
  6. L. Rudolph, D. Feitelson, and E. Schenfeld, “An optical interconnection network with 3-D layout and distributed control,” in Optical Interconnections and Networks, H. Bartelt, ed., Proc. SPIE 1281, 54–65 (1990).
    [CrossRef]
  7. A. Barak and E. Schenfeld, “Embedding classical communication topologies in the OPAM architecture,” in Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing (IEEE Computer Society, Los Alamitos, Calif., 1991) pp. 482–485.
    [CrossRef]
  8. V. Gupta and E. Schenfeld, “A heuristic approach for embedding communication patterns in an interconnection cached parallel processing network,” in Proceedings of the IPPS’93 (IEEE Computer Society, Los Alamitos, Calif., 1991), pp. 291–298.
  9. Y.-D. Lyuu and E. Schenfeld, “Parallel graph contraction with applications to a reconfigurable parallel architecture,” in Proceedings of the Twenty-third International Conference on Parallel Processing (ICPP) (CRC, Boca Raton, Fla., 1994), Vol. III, pp. 258–265.
  10. V. Gupta and E. Schenfeld, “Performance analysis of a synchronous, circuit-switched interconnection cached network,” in Proceedings of the Eighth ACM International Conference on Supercomputiong (ICS’94) (Association for Computing Machinery, New York, 1994), pp. 246–255.
    [CrossRef]
  11. Y.-D. Lyuu and E. Schenfeld, “MICA: a mapped interconnection-cached architecture,” in Proceedings of the Fifth IEEE Symposium on the Frontiers of Massively Parallel Computation (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 80–89.
  12. A. A. Sawchuk and B. K. Jenkins, “Dynamic optical interconnections for parallel processors,” in Optical Computing, J. A. Neff, ed., Proc. SPIE 625, 143–153 (1986).
  13. T. M. Pinkston and J. W. Goodman, “Design of an optical reconfigurable shared bus–hypercube interconnect,” Appl. Opt. 33, 1434–1443 (1994).
    [CrossRef] [PubMed]
  14. T. Sakano, T. Matsumoto, and K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system: COSINE-III,” Appl. Opt. 34, 1815–1822 (1995).
    [CrossRef] [PubMed]
  15. T. H. Szymanski and S. Hinton, “Reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
    [CrossRef] [PubMed]
  16. Y. Li, T. Wang, and R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
    [CrossRef] [PubMed]
  17. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
    [CrossRef] [PubMed]
  18. M. Kajita, K. Kasahara, T. J. Kim, I. Ogura, I. Redmond, and E. Schenfeld, “Free-space wavelength division multiplexing optical interconnections for massively parallel processing systems,” Tech. Rep. 95–196 (NEC Research Institute, Princeton, N.J., December 1995).
  19. J. W. Goodman, “Fan-in and fan-out with optical interconnection,” Opt. Acta 32, 1489–1496 (1985).
    [CrossRef]
  20. H. A. Macleod, Thin-film Optical Filters (McGraw-Hill, New York, 1986).
    [CrossRef]
  21. R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991).
    [CrossRef]
  22. T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995).
    [CrossRef]

1996 (3)

1995 (3)

T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995).
[CrossRef]

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

T. Sakano, T. Matsumoto, and K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system: COSINE-III,” Appl. Opt. 34, 1815–1822 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

R. A. Nordin, “A system perspective on digital interconnection technology,” IEEE J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

1991 (1)

J. W. Parker, “Optical interconnection for advanced processor systems: A review of the ESPRIT II OLIVES Program,” IEEE J. Lightwave Technol. 9, 1764–1773 (1991).
[CrossRef]

1985 (1)

J. W. Goodman, “Fan-in and fan-out with optical interconnection,” Opt. Acta 32, 1489–1496 (1985).
[CrossRef]

Aispain, H. A.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Anthony, P. J.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Araki, S.

Asom, M. T.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991).
[CrossRef]

Barak, A.

A. Barak and E. Schenfeld, “Embedding classical communication topologies in the OPAM architecture,” in Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing (IEEE Computer Society, Los Alamitos, Calif., 1991) pp. 482–485.
[CrossRef]

Bates, R. J. S.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Brandner, J. L.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Buchholz, D. B.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Chirovsky, L. M. F.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991).
[CrossRef]

Crow, J. D.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Faudskar, C. C.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Feitelson, D.

L. Rudolph, D. Feitelson, and E. Schenfeld, “An optical interconnection network with 3-D layout and distributed control,” in Optical Interconnections and Networks, H. Bartelt, ed., Proc. SPIE 1281, 54–65 (1990).
[CrossRef]

Fishteyn, M.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Focht, M. W.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991).
[CrossRef]

Gates, J. V.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Glogovsky, K. G.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Goodman, J. W.

T. M. Pinkston and J. W. Goodman, “Design of an optical reconfigurable shared bus–hypercube interconnect,” Appl. Opt. 33, 1434–1443 (1994).
[CrossRef] [PubMed]

J. W. Goodman, “Fan-in and fan-out with optical interconnection,” Opt. Acta 32, 1489–1496 (1985).
[CrossRef]

J. W. Goodman, “Optics as an interconnect technology,” Optical Processing and Computing, H. H. Arsenault, T. Szoplik, and B. Macukow, eds. (Academic, New York, 1989), Chap. 1.
[CrossRef]

Gowda, S. M.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Gupta, V.

V. Gupta and E. Schenfeld, “A heuristic approach for embedding communication patterns in an interconnection cached parallel processing network,” in Proceedings of the IPPS’93 (IEEE Computer Society, Los Alamitos, Calif., 1991), pp. 291–298.

V. Gupta and E. Schenfeld, “Performance analysis of a synchronous, circuit-switched interconnection cached network,” in Proceedings of the Eighth ACM International Conference on Supercomputiong (ICS’94) (Association for Computing Machinery, New York, 1994), pp. 246–255.
[CrossRef]

Guth, G.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991).
[CrossRef]

Guth, G. D.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Hinton, S.

Ireland, T. J.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Jenkins, B. K.

A. A. Sawchuk and B. K. Jenkins, “Dynamic optical interconnections for parallel processors,” in Optical Computing, J. A. Neff, ed., Proc. SPIE 625, 143–153 (1986).

Jewell, J. L.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991).
[CrossRef]

Kajita, M.

S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
[CrossRef] [PubMed]

T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995).
[CrossRef]

M. Kajita, K. Kasahara, T. J. Kim, I. Ogura, I. Redmond, and E. Schenfeld, “Free-space wavelength division multiplexing optical interconnections for massively parallel processing systems,” Tech. Rep. 95–196 (NEC Research Institute, Princeton, N.J., December 1995).

Kasahara, K.

S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
[CrossRef] [PubMed]

T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995).
[CrossRef]

M. Kajita, K. Kasahara, T. J. Kim, I. Ogura, I. Redmond, and E. Schenfeld, “Free-space wavelength division multiplexing optical interconnections for massively parallel processing systems,” Tech. Rep. 95–196 (NEC Research Institute, Princeton, N.J., December 1995).

Kim, T. J.

M. Kajita, K. Kasahara, T. J. Kim, I. Ogura, I. Redmond, and E. Schenfeld, “Free-space wavelength division multiplexing optical interconnections for massively parallel processing systems,” Tech. Rep. 95–196 (NEC Research Institute, Princeton, N.J., December 1995).

Kosaka, H.

T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995).
[CrossRef]

Kubota, K.

Kuchta, D. M.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Kühn, K.

T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995).
[CrossRef]

Kurihara, K.

S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
[CrossRef] [PubMed]

T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995).
[CrossRef]

Kwark, H. H.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Lee, Y. H.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991).
[CrossRef]

Leibenguth, R. E.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991).
[CrossRef]

Lewis, Jr., D. H.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Li, Y.

Linke, R. A.

Lweis, D. K.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Lyuu, Y.-D.

Y.-D. Lyuu and E. Schenfeld, “MICA: a mapped interconnection-cached architecture,” in Proceedings of the Fifth IEEE Symposium on the Frontiers of Massively Parallel Computation (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 80–89.

Y.-D. Lyuu and E. Schenfeld, “Parallel graph contraction with applications to a reconfigurable parallel architecture,” in Proceedings of the Twenty-third International Conference on Parallel Processing (ICPP) (CRC, Boca Raton, Fla., 1994), Vol. III, pp. 258–265.

Macleod, H. A.

H. A. Macleod, Thin-film Optical Filters (McGraw-Hill, New York, 1986).
[CrossRef]

Matsumoto, T.

Morgan, R. A.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991).
[CrossRef]

Muehlner, D. J.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Mullally, T.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Noguchi, K.

Nordin, R. A.

R. A. Nordin, “A system perspective on digital interconnection technology,” IEEE J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Nti, S. F.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Numai, T.

T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995).
[CrossRef]

Ogura, I.

T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995).
[CrossRef]

M. Kajita, K. Kasahara, T. J. Kim, I. Ogura, I. Redmond, and E. Schenfeld, “Free-space wavelength division multiplexing optical interconnections for massively parallel processing systems,” Tech. Rep. 95–196 (NEC Research Institute, Princeton, N.J., December 1995).

Parker, J. W.

J. W. Parker, “Optical interconnection for advanced processor systems: A review of the ESPRIT II OLIVES Program,” IEEE J. Lightwave Technol. 9, 1764–1773 (1991).
[CrossRef]

Parzygnat, W. J.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Pinkston, T. M.

Redmond, I.

S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
[CrossRef] [PubMed]

M. Kajita, K. Kasahara, T. J. Kim, I. Ogura, I. Redmond, and E. Schenfeld, “Free-space wavelength division multiplexing optical interconnections for massively parallel processing systems,” Tech. Rep. 95–196 (NEC Research Institute, Princeton, N.J., December 1995).

Robinson, K. C.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991).
[CrossRef]

Rogers, D. L.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Rudolph, L.

L. Rudolph, D. Feitelson, and E. Schenfeld, “An optical interconnection network with 3-D layout and distributed control,” in Optical Interconnections and Networks, H. Bartelt, ed., Proc. SPIE 1281, 54–65 (1990).
[CrossRef]

Saito, H.

T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995).
[CrossRef]

Sakano, T.

Sawchuk, A. A.

A. A. Sawchuk and B. K. Jenkins, “Dynamic optical interconnections for parallel processors,” in Optical Computing, J. A. Neff, ed., Proc. SPIE 625, 143–153 (1986).

Schenfeld, E.

S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
[CrossRef] [PubMed]

Y.-D. Lyuu and E. Schenfeld, “Parallel graph contraction with applications to a reconfigurable parallel architecture,” in Proceedings of the Twenty-third International Conference on Parallel Processing (ICPP) (CRC, Boca Raton, Fla., 1994), Vol. III, pp. 258–265.

L. Rudolph, D. Feitelson, and E. Schenfeld, “An optical interconnection network with 3-D layout and distributed control,” in Optical Interconnections and Networks, H. Bartelt, ed., Proc. SPIE 1281, 54–65 (1990).
[CrossRef]

E. Schenfeld, “Massively parallel processing with optical interconnections: what can be, should be and must not be done by optics,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 16–18.

V. Gupta and E. Schenfeld, “Performance analysis of a synchronous, circuit-switched interconnection cached network,” in Proceedings of the Eighth ACM International Conference on Supercomputiong (ICS’94) (Association for Computing Machinery, New York, 1994), pp. 246–255.
[CrossRef]

M. Kajita, K. Kasahara, T. J. Kim, I. Ogura, I. Redmond, and E. Schenfeld, “Free-space wavelength division multiplexing optical interconnections for massively parallel processing systems,” Tech. Rep. 95–196 (NEC Research Institute, Princeton, N.J., December 1995).

Y.-D. Lyuu and E. Schenfeld, “MICA: a mapped interconnection-cached architecture,” in Proceedings of the Fifth IEEE Symposium on the Frontiers of Massively Parallel Computation (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 80–89.

V. Gupta and E. Schenfeld, “A heuristic approach for embedding communication patterns in an interconnection cached parallel processing network,” in Proceedings of the IPPS’93 (IEEE Computer Society, Los Alamitos, Calif., 1991), pp. 291–298.

A. Barak and E. Schenfeld, “Embedding classical communication topologies in the OPAM architecture,” in Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing (IEEE Computer Society, Los Alamitos, Calif., 1991) pp. 482–485.
[CrossRef]

Smith, D. F.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Suzaki, T.

Szymanski, T. H.

Tyrone, B. H.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Walker, S. G.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Wang, T.

Wong, Y.-M.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Zilko, J. L.

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

Appl. Opt. (5)

IEEE J. Lightwave Technol. (3)

J. W. Parker, “Optical interconnection for advanced processor systems: A review of the ESPRIT II OLIVES Program,” IEEE J. Lightwave Technol. 9, 1764–1773 (1991).
[CrossRef]

R. A. Nordin, “A system perspective on digital interconnection technology,” IEEE J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995).
[CrossRef]

Opt. Acta (1)

J. W. Goodman, “Fan-in and fan-out with optical interconnection,” Opt. Acta 32, 1489–1496 (1985).
[CrossRef]

Other (12)

H. A. Macleod, Thin-film Optical Filters (McGraw-Hill, New York, 1986).
[CrossRef]

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991).
[CrossRef]

J. W. Goodman, “Optics as an interconnect technology,” Optical Processing and Computing, H. H. Arsenault, T. Szoplik, and B. Macukow, eds. (Academic, New York, 1989), Chap. 1.
[CrossRef]

E. Schenfeld, “Massively parallel processing with optical interconnections: what can be, should be and must not be done by optics,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 16–18.

L. Rudolph, D. Feitelson, and E. Schenfeld, “An optical interconnection network with 3-D layout and distributed control,” in Optical Interconnections and Networks, H. Bartelt, ed., Proc. SPIE 1281, 54–65 (1990).
[CrossRef]

A. Barak and E. Schenfeld, “Embedding classical communication topologies in the OPAM architecture,” in Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing (IEEE Computer Society, Los Alamitos, Calif., 1991) pp. 482–485.
[CrossRef]

V. Gupta and E. Schenfeld, “A heuristic approach for embedding communication patterns in an interconnection cached parallel processing network,” in Proceedings of the IPPS’93 (IEEE Computer Society, Los Alamitos, Calif., 1991), pp. 291–298.

Y.-D. Lyuu and E. Schenfeld, “Parallel graph contraction with applications to a reconfigurable parallel architecture,” in Proceedings of the Twenty-third International Conference on Parallel Processing (ICPP) (CRC, Boca Raton, Fla., 1994), Vol. III, pp. 258–265.

V. Gupta and E. Schenfeld, “Performance analysis of a synchronous, circuit-switched interconnection cached network,” in Proceedings of the Eighth ACM International Conference on Supercomputiong (ICS’94) (Association for Computing Machinery, New York, 1994), pp. 246–255.
[CrossRef]

Y.-D. Lyuu and E. Schenfeld, “MICA: a mapped interconnection-cached architecture,” in Proceedings of the Fifth IEEE Symposium on the Frontiers of Massively Parallel Computation (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 80–89.

A. A. Sawchuk and B. K. Jenkins, “Dynamic optical interconnections for parallel processors,” in Optical Computing, J. A. Neff, ed., Proc. SPIE 625, 143–153 (1986).

M. Kajita, K. Kasahara, T. J. Kim, I. Ogura, I. Redmond, and E. Schenfeld, “Free-space wavelength division multiplexing optical interconnections for massively parallel processing systems,” Tech. Rep. 95–196 (NEC Research Institute, Princeton, N.J., December 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of a 1024-channel free-space optical network. This design uses only one wavelength. Faceted partial mirrors are used to implement the fixed interconnection pattern present in the optics.

Fig. 2
Fig. 2

Optimum reflectances for the M - 1 channel fan-in required to minimize the loss for a single wavelength.

Fig. 3
Fig. 3

Example of a patterned partial micromirror for the 1024-channel ICN network.

Fig. 4
Fig. 4

(a) Construction of a 2096-channel WDM system from a 1024-channel system, as shown in Fig. 1, by the replacement of each cluster with a WDM module. (b) WDM module used for cluster replacement.

Fig. 5
Fig. 5

Schematic of a 1024-channel free-space optical network that uses WDM. There are 16 rows in each column; four wavelengths are used to avoid some of the fan-in loss. This system differs from the preceding system (Fig. 1) in that the function previously performed by the patterned partial mirrors has now been split and is performed separately by partial mirrors [R = 1, R = 1/(M - 1); M = 2, … , 16] and patterned mirrors (R = 1, only).

Fig. 6
Fig. 6

Idealized performance and application of a WDM filter for multiplexing and demultiplexing with wavelengths of 843, 950, and 980 nm.

Fig. 7
Fig. 7

Modeled WDM filter characteristics for wavelengths of 950, 967, and 980 nm for s polarization.

Fig. 8
Fig. 8

Schematic of the measurement setup for the WDM filter characteristics.

Fig. 9
Fig. 9

Measured data for the WDM filter characteristics for s-polarized light.

Fig. 10
Fig. 10

Schematic of the WDM experimental setup.

Fig. 11
Fig. 11

Photograph of the WDM experimental setup. Multiplexing occurs at the far end of the system, with demultiplexing occurring in the foreground.

Fig. 12
Fig. 12

Eye diagram at the 843-nm demultiplexed receiving channel with 1-Gbit/s transmission.

Fig. 13
Fig. 13

Eye diagram at the 950-nm demultiplexed receiving channel with 1-Gbit/s transmission.

Fig. 14
Fig. 14

Eye diagram at the 980-nm demultiplexed receiving channel with 1-Gbit/s transmission.

Fig. 15
Fig. 15

Received waveform at the 967-nm demultiplexed channel with 1-Gbit/s transmission. This plot shows the effects of polarization instability.

Tables (1)

Tables Icon

Table 1 Specifications for WDM Filters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Channel   efficiency = 10   log 1 M - 1 = - 18.0   dB ,
Transmittance % = I T I T + I R × 100 ,

Metrics