Abstract

Wavelength-division multiplexing (WDM) techniques provide many advantages for building optical interconnect networks for massively parallel processing (MPP) systems. A design for a 1024-channel network for MPP systems based on the interconnection-cached network with vertical-cavity surface-emitting laser (VCSEL) arrays with one wavelength is described. We then show how a WDM version with four different wavelengths can increase the channel density. We also show how a WDM system can reduce the fan-in loss by a factor of 4. All the VCSEL’s in each array are of the same wavelength, while different arrays use different wavelengths. We describe our experimental WDM subsystem containing four VCSEL arrays, operating at wavelengths of 843, 950, 970, and 980 nm, and three different WDM filters for multiplexing–demultiplexing. We present the operational results of the subsystem at 1 Gbit/s per channel.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription