Abstract

The successful application of a recurrent neural network of the Hopfield type to the solution of the stereo image-pair reconciliation problem in stereoscopic particle image velocimetry (PIV) in the tracking mode is described. The results of applying the network to both virtual-flow and physical-flow PIV data sets are presented, and the usefulness of this novel approach to PIV stereo image analysis is demonstrated. A partner-particle image-pair density (PPID) parameter is defined as the average number of potential particle image-pair candidates in the search window in the second view corresponding to a single image pair in the first view. A quantitative assessment of the performance of the method is then made from groups of 100 synthetic flow images at various values of the PPID. The successful pairing of complementary image points is shown to vary from 100% at a PPID of 1 and to remain greater than 97% successful for PPID’s up to 5. The application of the method to a hydraulic flow is also described, with in-line stereo images presented, and the application of the neural-matching method is demonstrated for a typical data set.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription