Abstract

A technique to reduce the influence of the dc and the complex-conjugate correlation signals that are inherent in a joint transform correlator is proposed. The key part of this technique is the use of a phase mask. The mask contributes only extraneous signals, so the influence of the signals is reduced. The desirable correlation signal is not affected, and its shape is retained. Computer simulations confirm the performance of the proposed phase-encoded joint transform correlator.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Weaver and J. W. Goodman, “A technique for optical convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [CrossRef] [PubMed]
  2. J. E. Rau, “Detection of differences in real distributions,” J. Opt. Soc. Am. 56, 1490–1494 (1966).
    [CrossRef]
  3. F. T. S. Yu, S. Jutamulia, T. W. Lin, and D. A. Gregory, “Adaptive real-time pattern recognition using a liquid crystal TV based on joint transform correlator,” Appl. Opt. 26, 1370–1372 (1987).
    [CrossRef] [PubMed]
  4. B. Javidi and C.-J. Kuo, “Joint transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
    [CrossRef] [PubMed]
  5. A. B. VanderLugt, “Signal detection by complex filters,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  6. Q. Tang and B. Javidi, “Technique for reducing the redundant and self-correlation terms in joint transform correlators,” Appl. Opt. 32, 1911–1918 (1993).
    [CrossRef] [PubMed]
  7. G. Lu, Z. Zhang, S. Wu, and F. T. S. Yu, “Implementation of a non-zero-order joint-transform correlator by use of phase-shifting techniques,” Appl. Opt. 36, 470–483 (1997).
    [CrossRef] [PubMed]
  8. S. Zhong, J. Jiang, S. Liu, and C. Li, “Binary joint transform correlator based on differential processing of the joint transform power spectrum,” Appl. Opt. 36, 1776–1780 (1997).
    [CrossRef] [PubMed]
  9. T. Nomura, Y. Yoshimura, K. Itoh, and Y. Ichioka, “Incoherent-only joint-transform correlator,” Appl. Opt. 34, 1420–1425 (1995).
    [CrossRef] [PubMed]
  10. J. L. Horner, B. Javidi, and G. Zhang, “Analysis of method to eliminate undesired responses in a binary phase-only filter,” Opt. Eng. 33, 1774–1776 (1994).
    [CrossRef]
  11. G. Lu, Z. Zhang, and F. T. S. Yu, “Phase-encoded input joint transform correlator with improved pattern discriminability,” Opt. Lett. 20, 1307–1309 (1995).
    [CrossRef] [PubMed]

1997 (2)

1995 (2)

1994 (1)

J. L. Horner, B. Javidi, and G. Zhang, “Analysis of method to eliminate undesired responses in a binary phase-only filter,” Opt. Eng. 33, 1774–1776 (1994).
[CrossRef]

1993 (1)

1988 (1)

1987 (1)

1966 (2)

1964 (1)

A. B. VanderLugt, “Signal detection by complex filters,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Goodman, J. W.

Gregory, D. A.

Horner, J. L.

J. L. Horner, B. Javidi, and G. Zhang, “Analysis of method to eliminate undesired responses in a binary phase-only filter,” Opt. Eng. 33, 1774–1776 (1994).
[CrossRef]

Ichioka, Y.

Itoh, K.

Javidi, B.

Jiang, J.

Jutamulia, S.

Kuo, C.-J.

Li, C.

Lin, T. W.

Liu, S.

Lu, G.

Nomura, T.

Rau, J. E.

Tang, Q.

VanderLugt, A. B.

A. B. VanderLugt, “Signal detection by complex filters,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Weaver, C. S.

Wu, S.

Yoshimura, Y.

Yu, F. T. S.

Zhang, G.

J. L. Horner, B. Javidi, and G. Zhang, “Analysis of method to eliminate undesired responses in a binary phase-only filter,” Opt. Eng. 33, 1774–1776 (1994).
[CrossRef]

Zhang, Z.

Zhong, S.

Appl. Opt. (7)

IEEE Trans. Inf. Theory (1)

A. B. VanderLugt, “Signal detection by complex filters,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

J. L. Horner, B. Javidi, and G. Zhang, “Analysis of method to eliminate undesired responses in a binary phase-only filter,” Opt. Eng. 33, 1774–1776 (1994).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the proposed JTC: (a) Optical system to record the JTPS. (b) Optical system to obtain the correlation output. L1–L9, lenses; M1, M2, mirrors; BS1, BS2, beam splitters; BE1–BE3, beam expanders; P1–P7, planes.

Fig. 2
Fig. 2

Input object consisting of a reference object and a test object for the conventional and the proposed JTC’s.

Fig. 3
Fig. 3

Output signal of a conventional JTC.

Fig. 4
Fig. 4

Output signal of the phase-encoded JTC with a random phase mask.

Fig. 5
Fig. 5

Output signal of the phase-encoded JTC with binarization for a JTPS with a random phase mask.

Fig. 6
Fig. 6

Output signal of the phase-encoded JTC with a random phase mask in the case of incorrect alignment.

Fig. 7
Fig. 7

Output signal of the phase-encoded JTC with a linear phase mask.

Fig. 8
Fig. 8

Output signal of the phase-encoded JTC with a linear phase mask in the case of incorrect alignment.

Tables (1)

Tables Icon

Table 1 Numerical Simulations of the Performance of Four JTC’s

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

h x = f x + g x .
| H ν | 2 = | F ν + G ν | 2 = F ν F * ν + G ν G * ν + F * ν G ν + F ν G * ν ,
c x = FT - 1 | H ν | 2 = f x     f x + g x     g x + f - x     g - x + f x     g x ,
h x = f x + g x   *   ϕ x ,
| H ν | 2 = | F ν + G ν Φ ν | 2 = F ν F * ν + G ν G * ν + F * ν G ν Φ ν + F ν G * ν Φ * ν .
c x = FT - 1 | H ν | 2 Φ ν = FT - 1 F ν F * ν Φ ν + G ν G * ν Φ ν + F * ν G ν Φ ν Φ ν + F ν G * ν = f x     f x   *   ϕ x + g x     g x   *   ϕ x + f - x     g - x   *   ϕ x   *   ϕ x + f x     g x .
Φ ν = exp j ψ ν ,
Φ ν = Φ ν - α
Φ ν = exp j a ν + b ,
SNR = CS 2 Var c x ,
SCR = CS 2 EC 2 ,

Metrics