Abstract

We describe a near-field scanning optical microscope capable of imaging biological samples in liquid. The microscope uses a straight optical fiber near-field probe and optical shear-force feedback for tip–sample distance regulation. Physical aspects of the design are discussed, and phenomena related to operation in liquid are revealed. Careful calibration of the instrument in air and in liquid is shown, and for the first time to our knowledge, near-field fluorescence images of a biological cell in liquid are presented.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lewis, K. Lieberman, “Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions,” Nature (London) 354, 214–216 (1991).
    [CrossRef]
  2. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
    [CrossRef]
  3. G. Binning, H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126, 236–244 (1983).
    [CrossRef]
  4. G. Binning, C. F. Quate, C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
    [CrossRef]
  5. H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquids,” Appl. Phys. Lett. 66, 3245–3247 (1995).
    [CrossRef]
  6. R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
    [CrossRef]
  7. M. Naya, R. Micheletto, S. Mononobe, R. U. Maheswari, M. Ohtsu, “Near-field optical imaging of flagellar filaments of salmonella in water with optical feedback control,” Appl. Opt. 36, 1681–1683 (1997).
    [CrossRef] [PubMed]
  8. T. H. Keller, T. Rayment, D. Klenerman, R. J. Stephenson, “Scanning near-field optical microscopy in reflection mode imaging in liquid,” Rev. Sci. Instrum. 68, 1448–1454 (1997).
    [CrossRef]
  9. P. J. Moyer, S. B. Kammer, “High-resolution imaging using near-field scanning optical microscopy and shear force feedback in water,” Appl. Phys. Lett. 68, 3380–3382 (1996).
    [CrossRef]
  10. M. Mertesdorf, M. Schonhoff, F. Lohr, S. Kirstein, “Scanning near-field optical microscope designed for operation in liquids,” Surf. Interface Anal. 25, 755–759 (1997).
    [CrossRef]
  11. PZT-5H piezo tube from Staveley Sensors, Inc., 91 Prestige Park Circle, East Hartford, Conn. 08108-5420, telephone (860) 289-5428.
  12. InGaAlP T9225 diode laser, Toshiba Corporation, 1-1-1. Shibaura Minatoku, Tokyo 105-01, Japan.
  13. FS-SN-3224 single-mode optical fiber, 3M, 420 Frontage Road, West Haven, Conn. 06516-4190, telephone (230) 934-7961.
  14. PAC022 Achromatic lens, Newport Corporation, 1791 Deere Avenue, Irvine, Calif. 92714, telephone (800) 222-6440.
  15. J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip-sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
    [CrossRef]
  16. K. Karrai, R. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1843 (1995).
    [CrossRef]
  17. 0.310-in. (0.079-cm)-diameter, 0.010-in. (0.025-cm)-thick quartz window, ESCO Products, Inc., 171 Oak Ridge Road, Oak Ridge, N.J. 07438, telephone (800) 922-3726.
  18. Type 316W stainless-steel hypodermic tubing, Small Parts Inc., 13980 N.W. 58th Court, Miami Lakes, Fla. 33014-0650, telephone (800) 220-4242.
  19. High-speed silicon p-i-n photodiode, Model 13DSI 007, Melles Griot, 1770 Kettering Street, Irvine, Calif. 92714, telephone (800) 835-2626.
  20. Wide bandwidth amplifier, Model 13 AMP 005, Melles Griot, 1770 Kettering Street, Irvine, Calif. 92714, telephone (800) 835-2626.
  21. Lock-in amplifier, Model 5210, EG&G Princeton Applied Research, P.O. Box 2565, Princeton, N.J. 08543-2565, telephone (609) 530-1000.
  22. STM 100, RHK Technology, Inc., 1750 West Hamlin Road., Rochester Hills, Mich. 48309, telephone (810) 656-3116.
  23. Axiovert 100 microscope, Zeiss, One Zeiss Drive, Thornwood, N.Y. 10594, telephone (800) 233-2343.
  24. Achrostigmat objective, Model 440280, Zeiss, One Zeiss Drive, Thornwood, N.Y. 10594, telephone (800) 233-2343.
  25. Single-photon-counting module, Model SPCM-200 CD1718, EG&G Optoelectronics Canada, 221 Commerce Drive, Montgomeryville, Pa. 18936, telephone (514) 424-3361.
  26. Omega Optical, Inc., P.O. Box 573, 3 Grove Street, Brattleboro, Vt. 05302-0573.
  27. M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe-surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
    [CrossRef]
  28. Handbook of Chemistry and Physics, 48th ed. (Chemical Rubber, Cleveland, Ohio, 1967–1968).
  29. Dubbel Handbook of Mechanical Engineering (Springer-Verlag, Heidelberg, Germany, 1995).
  30. Standard Handbook for Mechanical Engineers, 7th ed. (McGraw-Hill, New York, 1967).
  31. 1-μm pitch calibration grating, Park Scientific Instruments, 1171 Borregas Avenue, Sunnyvale, Calif. 94089, telephone (408) 747-1600.

1997 (3)

T. H. Keller, T. Rayment, D. Klenerman, R. J. Stephenson, “Scanning near-field optical microscopy in reflection mode imaging in liquid,” Rev. Sci. Instrum. 68, 1448–1454 (1997).
[CrossRef]

M. Mertesdorf, M. Schonhoff, F. Lohr, S. Kirstein, “Scanning near-field optical microscope designed for operation in liquids,” Surf. Interface Anal. 25, 755–759 (1997).
[CrossRef]

M. Naya, R. Micheletto, S. Mononobe, R. U. Maheswari, M. Ohtsu, “Near-field optical imaging of flagellar filaments of salmonella in water with optical feedback control,” Appl. Opt. 36, 1681–1683 (1997).
[CrossRef] [PubMed]

1996 (3)

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe-surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

P. J. Moyer, S. B. Kammer, “High-resolution imaging using near-field scanning optical microscopy and shear force feedback in water,” Appl. Phys. Lett. 68, 3380–3382 (1996).
[CrossRef]

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

1995 (3)

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquids,” Appl. Phys. Lett. 66, 3245–3247 (1995).
[CrossRef]

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip-sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
[CrossRef]

K. Karrai, R. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1843 (1995).
[CrossRef]

1992 (1)

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

1991 (1)

A. Lewis, K. Lieberman, “Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions,” Nature (London) 354, 214–216 (1991).
[CrossRef]

1986 (1)

G. Binning, C. F. Quate, C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef]

1983 (1)

G. Binning, H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126, 236–244 (1983).
[CrossRef]

Ataka, T.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquids,” Appl. Phys. Lett. 66, 3245–3247 (1995).
[CrossRef]

Betzig, E.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Binning, G.

G. Binning, C. F. Quate, C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef]

G. Binning, H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126, 236–244 (1983).
[CrossRef]

Blome, P. G.

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe-surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

Chiba, N.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquids,” Appl. Phys. Lett. 66, 3245–3247 (1995).
[CrossRef]

Deaver, B. S.

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip-sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
[CrossRef]

Finn, P. L.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Fujihira, M.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquids,” Appl. Phys. Lett. 66, 3245–3247 (1995).
[CrossRef]

Gerber, C.

G. Binning, C. F. Quate, C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef]

Gregor, M. J.

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe-surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

Grober, R.

K. Karrai, R. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1843 (1995).
[CrossRef]

Homma, K.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquids,” Appl. Phys. Lett. 66, 3245–3247 (1995).
[CrossRef]

Hsu, J. W. P.

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip-sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
[CrossRef]

Kammer, S. B.

P. J. Moyer, S. B. Kammer, “High-resolution imaging using near-field scanning optical microscopy and shear force feedback in water,” Appl. Phys. Lett. 68, 3380–3382 (1996).
[CrossRef]

Karrai, K.

K. Karrai, R. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1843 (1995).
[CrossRef]

Katayama, Y.

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

Keller, T. H.

T. H. Keller, T. Rayment, D. Klenerman, R. J. Stephenson, “Scanning near-field optical microscopy in reflection mode imaging in liquid,” Rev. Sci. Instrum. 68, 1448–1454 (1997).
[CrossRef]

Kirstein, S.

M. Mertesdorf, M. Schonhoff, F. Lohr, S. Kirstein, “Scanning near-field optical microscope designed for operation in liquids,” Surf. Interface Anal. 25, 755–759 (1997).
[CrossRef]

Klenerman, D.

T. H. Keller, T. Rayment, D. Klenerman, R. J. Stephenson, “Scanning near-field optical microscopy in reflection mode imaging in liquid,” Rev. Sci. Instrum. 68, 1448–1454 (1997).
[CrossRef]

Kusumi, A.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquids,” Appl. Phys. Lett. 66, 3245–3247 (1995).
[CrossRef]

Lee, M.

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip-sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
[CrossRef]

Lewis, A.

A. Lewis, K. Lieberman, “Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions,” Nature (London) 354, 214–216 (1991).
[CrossRef]

Lieberman, K.

A. Lewis, K. Lieberman, “Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions,” Nature (London) 354, 214–216 (1991).
[CrossRef]

Lohr, F.

M. Mertesdorf, M. Schonhoff, F. Lohr, S. Kirstein, “Scanning near-field optical microscope designed for operation in liquids,” Surf. Interface Anal. 25, 755–759 (1997).
[CrossRef]

Maheswari, R. U.

M. Naya, R. Micheletto, S. Mononobe, R. U. Maheswari, M. Ohtsu, “Near-field optical imaging of flagellar filaments of salmonella in water with optical feedback control,” Appl. Opt. 36, 1681–1683 (1997).
[CrossRef] [PubMed]

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

Mertesdorf, M.

M. Mertesdorf, M. Schonhoff, F. Lohr, S. Kirstein, “Scanning near-field optical microscope designed for operation in liquids,” Surf. Interface Anal. 25, 755–759 (1997).
[CrossRef]

Micheletto, R.

Mononobe, S.

M. Naya, R. Micheletto, S. Mononobe, R. U. Maheswari, M. Ohtsu, “Near-field optical imaging of flagellar filaments of salmonella in water with optical feedback control,” Appl. Opt. 36, 1681–1683 (1997).
[CrossRef] [PubMed]

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

Moyer, P. J.

P. J. Moyer, S. B. Kammer, “High-resolution imaging using near-field scanning optical microscopy and shear force feedback in water,” Appl. Phys. Lett. 68, 3380–3382 (1996).
[CrossRef]

Muramatsu, H.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquids,” Appl. Phys. Lett. 66, 3245–3247 (1995).
[CrossRef]

Nakajima, K.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquids,” Appl. Phys. Lett. 66, 3245–3247 (1995).
[CrossRef]

Naya, M.

Ohta, S.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquids,” Appl. Phys. Lett. 66, 3245–3247 (1995).
[CrossRef]

Ohtsu, M.

M. Naya, R. Micheletto, S. Mononobe, R. U. Maheswari, M. Ohtsu, “Near-field optical imaging of flagellar filaments of salmonella in water with optical feedback control,” Appl. Opt. 36, 1681–1683 (1997).
[CrossRef] [PubMed]

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

Quate, C. F.

G. Binning, C. F. Quate, C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef]

Rayment, T.

T. H. Keller, T. Rayment, D. Klenerman, R. J. Stephenson, “Scanning near-field optical microscopy in reflection mode imaging in liquid,” Rev. Sci. Instrum. 68, 1448–1454 (1997).
[CrossRef]

Rohrer, H.

G. Binning, H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126, 236–244 (1983).
[CrossRef]

Schöfer, J.

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe-surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

Schonhoff, M.

M. Mertesdorf, M. Schonhoff, F. Lohr, S. Kirstein, “Scanning near-field optical microscope designed for operation in liquids,” Surf. Interface Anal. 25, 755–759 (1997).
[CrossRef]

Stephenson, R. J.

T. H. Keller, T. Rayment, D. Klenerman, R. J. Stephenson, “Scanning near-field optical microscopy in reflection mode imaging in liquid,” Rev. Sci. Instrum. 68, 1448–1454 (1997).
[CrossRef]

Tatsumi, H.

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

Ulbrich, R. G.

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe-surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

Weiner, J. S.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquids,” Appl. Phys. Lett. 66, 3245–3247 (1995).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

K. Karrai, R. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1843 (1995).
[CrossRef]

P. J. Moyer, S. B. Kammer, “High-resolution imaging using near-field scanning optical microscopy and shear force feedback in water,” Appl. Phys. Lett. 68, 3380–3382 (1996).
[CrossRef]

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe-surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

Nature (London) (1)

A. Lewis, K. Lieberman, “Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions,” Nature (London) 354, 214–216 (1991).
[CrossRef]

Opt. Rev. (1)

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

G. Binning, C. F. Quate, C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef]

Rev. Sci. Instrum. (2)

T. H. Keller, T. Rayment, D. Klenerman, R. J. Stephenson, “Scanning near-field optical microscopy in reflection mode imaging in liquid,” Rev. Sci. Instrum. 68, 1448–1454 (1997).
[CrossRef]

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip-sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
[CrossRef]

Surf. Interface Anal. (1)

M. Mertesdorf, M. Schonhoff, F. Lohr, S. Kirstein, “Scanning near-field optical microscope designed for operation in liquids,” Surf. Interface Anal. 25, 755–759 (1997).
[CrossRef]

Surf. Sci. (1)

G. Binning, H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126, 236–244 (1983).
[CrossRef]

Other (18)

0.310-in. (0.079-cm)-diameter, 0.010-in. (0.025-cm)-thick quartz window, ESCO Products, Inc., 171 Oak Ridge Road, Oak Ridge, N.J. 07438, telephone (800) 922-3726.

Type 316W stainless-steel hypodermic tubing, Small Parts Inc., 13980 N.W. 58th Court, Miami Lakes, Fla. 33014-0650, telephone (800) 220-4242.

High-speed silicon p-i-n photodiode, Model 13DSI 007, Melles Griot, 1770 Kettering Street, Irvine, Calif. 92714, telephone (800) 835-2626.

Wide bandwidth amplifier, Model 13 AMP 005, Melles Griot, 1770 Kettering Street, Irvine, Calif. 92714, telephone (800) 835-2626.

Lock-in amplifier, Model 5210, EG&G Princeton Applied Research, P.O. Box 2565, Princeton, N.J. 08543-2565, telephone (609) 530-1000.

STM 100, RHK Technology, Inc., 1750 West Hamlin Road., Rochester Hills, Mich. 48309, telephone (810) 656-3116.

Axiovert 100 microscope, Zeiss, One Zeiss Drive, Thornwood, N.Y. 10594, telephone (800) 233-2343.

Achrostigmat objective, Model 440280, Zeiss, One Zeiss Drive, Thornwood, N.Y. 10594, telephone (800) 233-2343.

Single-photon-counting module, Model SPCM-200 CD1718, EG&G Optoelectronics Canada, 221 Commerce Drive, Montgomeryville, Pa. 18936, telephone (514) 424-3361.

Omega Optical, Inc., P.O. Box 573, 3 Grove Street, Brattleboro, Vt. 05302-0573.

PZT-5H piezo tube from Staveley Sensors, Inc., 91 Prestige Park Circle, East Hartford, Conn. 08108-5420, telephone (860) 289-5428.

InGaAlP T9225 diode laser, Toshiba Corporation, 1-1-1. Shibaura Minatoku, Tokyo 105-01, Japan.

FS-SN-3224 single-mode optical fiber, 3M, 420 Frontage Road, West Haven, Conn. 06516-4190, telephone (230) 934-7961.

PAC022 Achromatic lens, Newport Corporation, 1791 Deere Avenue, Irvine, Calif. 92714, telephone (800) 222-6440.

Handbook of Chemistry and Physics, 48th ed. (Chemical Rubber, Cleveland, Ohio, 1967–1968).

Dubbel Handbook of Mechanical Engineering (Springer-Verlag, Heidelberg, Germany, 1995).

Standard Handbook for Mechanical Engineers, 7th ed. (McGraw-Hill, New York, 1967).

1-μm pitch calibration grating, Park Scientific Instruments, 1171 Borregas Avenue, Sunnyvale, Calif. 94089, telephone (408) 747-1600.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the NSOM: A, differential gear assembly; B, 1/4-80 screws; C, fine-approach piezo; D, dither piezo; E, dovetail XY translator; F, scanner piezo; G, diode laser; H, photodiode detector; I, top part of the liquid chamber; and J, sample mount/bottom cap of the liquid chamber. The lower part of the figure shows an enlargement of the liquid chamber, including the quartz window, the hypodermic needles, the rubber seal, and the arrangement allowing regulation of the liquid level in the chamber by syphoning.

Fig. 2
Fig. 2

Frequency response of the tip around resonance in air (squares) and in water (crosses). For the curve acquired in air, the center frequency is 22,478 Hz and the FWHM is 168 Hz; hence the Q factor is 139. For the curve acquired in water, the center frequency is 22,413 Hz and the FWHM is 268 Hz; hence the Q factor is 83.

Fig. 3
Fig. 3

Shear-force response curves with the tip and the sample in various conditions: a, in air; b, in water; and c, in 25% sucrose solution in water. The long, linear tails in b and c are a result of dipping a progressively longer (shorter) portion of the tip in liquid when it is approached (retracted) to (from) the sample.

Fig. 4
Fig. 4

Comparison between the slopes of the shear-force response curves shown in Fig. 3. a, The steep slope portion of the curve acquired in water, compared with the slope of the curve acquired in air. The slopes are similar, originating from the same type of interaction between tip and sample. b, Comparison between the shallow portions of the curves acquired in water and sucrose. The slope of the curve acquired in sucrose is ∼2.5 times steeper than that of the curve acquired in water, which is in agreement with the ∼2.1 viscosity ratio.

Fig. 5
Fig. 5

Shear-force images of a calibration gold grid acquired, a, in air and, b, in water. The grid nominal pitch is 1 μm and is identical for both images, as calculated from 2D FFT. The measured corrugation height is similar in both images and equals 160 nm.

Fig. 6
Fig. 6

Images of a thin carbon grid: a, shear force and, b, transmitted light. The transition from low to high light intensity along the line marked in b is plotted in c and is observed to have ∼200-nm width.

Fig. 7
Fig. 7

Dependence of the tip vibration amplitude on the dithering voltage. The spot of light emerging from the tip aperture was imaged with a CCD camera with a 100× objective, whereas the tip was vibrated by a range of dithering voltage amplitudes. The vibrating tip appears as a line of light whose length changes according to the amplitude of the dithering voltage. This length is plotted versus the amplitude of the dithering voltage and shows a linear dependence, with a slope of 1424 nm/V. The length of the line cannot be measured for low dithering amplitudes, since the vibration amplitude is smaller than the diffraction limit of the far-field microscope. However, the vibration amplitude was monitored simultaneously with the laser scattering setup, which is normally used for feedback regulation, to assure that the dependence remains linear down to very low amplitudes. This plot is shown in the inset of the figure and justifies extrapolating the result of direct imaging of the tip vibration amplitude down to very low dithering amplitudes.

Fig. 8
Fig. 8

Images of a test sample composed of rhodamine-conjugated antibodies spread on top of polymerized poly-L-lysine: a, Shear force and, b, fluorescence. The fluorescence image is shown to be uncorrelated with the shear-force image (Z corrugation is 800 nm), confirming proper operation of the feedback system.

Fig. 9
Fig. 9

Shear force image of a fibroblast cell. An uncoated tip is used to fix and image the cell in a medium. The flat area in the lower part of the image is the glass coverslip on which the cell adheres.

Fig. 10
Fig. 10

Images of a fibroblast cell: a, Shear-force and b, fluorescence. The cell was stained with Cy3-conjugated antibodies against HLA I membrane proteins and was fixed and imaged in a medium. The width of the lines marked with arrows in b is ∼150 nm. c, Perspective image created by drawing the height contours with the data from a and colored with the data from b.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F d = C d ρ   ν 2 2 A p ,
C d k R e ,
R e ρ ν L μ ,
F d k R e ρ   ν 2 2 ld = k μ ρ ν d   ρ ν 2 ld = k μ ν l ,

Metrics