Abstract

An amplitude-sensitive optical heterodyne polarimeter was set up to monitor noninvasively the aqueous glucose concentration in a rabbit’s eye. A Zeeman laser in conjunction with a Glan–Thompson analyzer was used to generate an optical heterodyne signal. The amplitude of the heterodyne signal linearly related to the optical rotation angle of the aqueous glucose. The concentration of the aqueous glucose in a rabbit’s eyeball was measured in vivo. There was a 30-min time delay between observations of aqueous glucose and blood glucose. The detection capability and the reproducibility of the experiment are demonstrated and discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
    [CrossRef] [PubMed]
  2. W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
    [CrossRef] [PubMed]
  3. G. L. Cote, B. D. Cameron, “Noninvasive polarimetric measurement of glucose in cell culture media,” J. Biomed. Opt. 2, 275–281 (1997).
    [CrossRef] [PubMed]
  4. C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
    [CrossRef]
  5. T. Mitsui, K. Sakurai, “Precise measurement of the refractive index and optical rotatory power of a suspension by a delayed optical heterodyne technique,” Appl. Opt. 35, 2253–2258 (1996).
    [CrossRef] [PubMed]
  6. M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
    [CrossRef]
  7. S. C. Cohen, “Heterodyne detection: phase front alignment, beam spot size, and detector uniformity,” Appl. Opt. 14, 1953–1959 (1975).
    [CrossRef] [PubMed]
  8. M. Kohl, M. Cope, M. Essenpreis, D. Bocker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170–2172 (1994).
    [CrossRef] [PubMed]
  9. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, E. Gratton, “Possible correlation between the blood glucose concentration coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
    [CrossRef] [PubMed]
  10. J. T. Bruulserna, J. E. Hayward, T. J. Farrell, M. S. Pattersson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redekev, D. Boker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
    [CrossRef]
  11. R. L. Stamper, “Aqueous humor: secretion and dynamics,” in Physiology of the Human Eye and Visual System, R. E. Records, ed. (Harper & Row, Hagerstown, Md., 1979), pp. 156–182.
  12. D. A. Gough, “The composition and optical rotary dispersion of bovine aqueous humor,” Diabetes Care 5, 266–270 (1982).
    [CrossRef] [PubMed]

1997 (3)

G. L. Cote, B. D. Cameron, “Noninvasive polarimetric measurement of glucose in cell culture media,” J. Biomed. Opt. 2, 275–281 (1997).
[CrossRef] [PubMed]

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

J. T. Bruulserna, J. E. Hayward, T. J. Farrell, M. S. Pattersson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redekev, D. Boker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef]

1996 (1)

1994 (2)

1991 (1)

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

1982 (3)

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef] [PubMed]

D. A. Gough, “The composition and optical rotary dispersion of bovine aqueous humor,” Diabetes Care 5, 266–270 (1982).
[CrossRef] [PubMed]

1975 (1)

Adams, R. L.

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef] [PubMed]

Berger, M.

Bocker, D.

Boker, D.

Bruulserna, J. T.

Cameron, B. D.

G. L. Cote, B. D. Cameron, “Noninvasive polarimetric measurement of glucose in cell culture media,” J. Biomed. Opt. 2, 275–281 (1997).
[CrossRef] [PubMed]

Chang, M.

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

Chou, C.

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

Cohen, S. C.

Cope, M.

Cote, G. L.

G. L. Cote, B. D. Cameron, “Noninvasive polarimetric measurement of glucose in cell culture media,” J. Biomed. Opt. 2, 275–281 (1997).
[CrossRef] [PubMed]

Essenpreis, M.

Fantini, S.

Farrell, T. J.

Feng, C. M.

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

Franceschini, M. A.

Gough, D. A.

D. A. Gough, “The composition and optical rotary dispersion of bovine aqueous humor,” Diabetes Care 5, 266–270 (1982).
[CrossRef] [PubMed]

Gratton, E.

Hayward, J. E.

Heinemann, L.

Huang, Y. C.

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

Ichimura, T.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Inaba, H.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Kohl, M.

Kondo, M.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Koschinsky, T.

Maier, J. S.

March, W. F.

W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef] [PubMed]

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

Mitsui, T.

Orskov, H.

Pattersson, M. S.

Rabinovitch, B.

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef] [PubMed]

Sakurai, K.

Sandahl-Christiansen, J.

Schmelzeisen-Redekev, G.

Stamper, R. L.

R. L. Stamper, “Aqueous humor: secretion and dynamics,” in Physiology of the Human Eye and Visual System, R. E. Records, ed. (Harper & Row, Hagerstown, Md., 1979), pp. 156–182.

Toida, M.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Walker, S. A.

Appl. Opt. (2)

Appl. Phys. B (1)

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Diabetes Care (3)

D. A. Gough, “The composition and optical rotary dispersion of bovine aqueous humor,” Diabetes Care 5, 266–270 (1982).
[CrossRef] [PubMed]

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

G. L. Cote, B. D. Cameron, “Noninvasive polarimetric measurement of glucose in cell culture media,” J. Biomed. Opt. 2, 275–281 (1997).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

Opt. Lett. (3)

Other (1)

R. L. Stamper, “Aqueous humor: secretion and dynamics,” in Physiology of the Human Eye and Visual System, R. E. Records, ed. (Harper & Row, Hagerstown, Md., 1979), pp. 156–182.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Anterior chamber of the eye as the window to blood glucose concentration.

Fig. 2
Fig. 2

Configuration of the experimental setup. A Zeeman laser and a Glan–Thompson analyzer were used. The heterodyned signal was detected by a silicon photodetector and a 2.6-MHz central frequency bandpass filter. DVM is a digital voltmeter used to monitor the amplitude of the heterodyned signal.

Fig. 3
Fig. 3

P- and S-polarized waves transmitted (a) through the analyzer and (b) through the analyzer and the tested sample.

Fig. 4
Fig. 4

Response curves of the variation in the aqueous glucose (fluctuations in the solid curve) and in the blood glucose (open circles) of (a) test rabbit 1 and (b) test rabbit 2 after Imalgene was injected into the muscle. The scaling factor between the blood glucose and the aqueous glucose was calculated by the ratio of the slope with respect to the blood glucose tested by BGA and the aqueous glucose in the linear response range. They were equal to 60 (mg/dl)/V, and the time delays were 32 and 30 min, respectively.

Fig. 5
Fig. 5

Experimental results of rabbit 3 when a lower output laser power was used compared with Fig. 4.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α λ , PH T = θ m CL ,
I s = a 1 a 2   sin   2 θ s + θ m cos Δ ω t ,
I s 2 a 1 a 2 θ s + θ m cos Δ ω t .

Metrics