Abstract

A novel analytical thin-film design method is presented that is based on electrical engineering communication theory. The proposed thickness modulation describes the thickness modulation of discrete, homogeneous thin-film layers of a multilayer coating. One modulation scheme, amplitude modulation, is presented in which analytical equations determine individual layer thicknesses for a given modulation amplitude, carrier frequency (f c), direct-current bias, as well as several layers and refractive indices. The spectral performance (especially stop bands) of multilayer coatings with alternating layers of two refractive indices is presented for different carrier frequencies and modulation amplitudes. For f c ≤ 1, the ratio of the center frequencies of the first-order (f 1) and the next present stop band (f 2) is determined analytically from the modulation frequency for which f 2/f 1 = 2f c + 1. Particular cases of the carrier frequency produce virtual stop bands below the spectral frequency of the first-order stop band as well as high-frequency harmonics. Degenerate and other cases of thickness-modulated designs are presented, along with other modulation methods.

© 1998 Optical Society of America

Full Article  |  PDF Article
Related Articles
Multilayer Interference Filters with Narrow Stop Bands

Leo Young
Appl. Opt. 6(2) 297-315 (1967)

Multilayer reflectors with suppressed higher-order reflectance peaks

Philip Baumeister
Appl. Opt. 31(10) 1568-1573 (1992)

Extended-bandwidth reflector designs by using wavelets

William H. Southwell
Appl. Opt. 36(1) 314-318 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription