Abstract

A pyrometric method was developed earlier for the simultaneous in situ measurement of the temperature and the size of combusting fuel particles in entrained flow reactors. The temperature measurement is based on two-color pyrometry and the particle sizing on the proportionality of the measured radiative flux and the cross-sectional area of a particle at a known temperature. This particle-sizing method needs a discrimination procedure to confirm that the detected particle is valid for particle sizing. We report on a novel method for particle discrimination based on coaxial reference optics. The new method has several advantages compared with the method presented earlier, including the measurement in turbulent flow fields.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Tichenor, R. E. Mitchell, K. R. Hencken, S. Niksa, “Simultaneous in situ measurement of the size, temperature and velocity of particles in a combustion environment,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1213–1221.
  2. T. H. Fletcher, “Time-resolved temperature measurements of individual coal particles during devolatilization,” Combust. Sci. Technol. 63, 89–105 (1989).
    [CrossRef]
  3. R. F. Cope, C. R. Monson, G. J. Germane, W. C. Hecker, “Improved diameter, velocity, and temperature measurements for char particles in drop-tube reactors,” Energ. Fuels 8, 925–931 (1994).
    [CrossRef]
  4. B. C. Young, D. P. McCollor, B. J. Weber, M. L. Jones, “Temperature measurements of Beulah lignite char in a novel laminar-flow reactor,” Fuel 67, 40–44 (1988).
    [CrossRef]
  5. A. R. Schroeder, D. M. Thompson, G. G. Daves, R. O. Buckius, H. Krier, J. E. Peters, “Simultaneous particle morphology and temperature measurements of burning pulverized coal,” in Twenty-fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1161–1169.
    [CrossRef]
  6. A. Scherello, “Experimentelle und theoretische Untersuchung des Einflusses von Aufheitzgeschwindigkeit und Druck auf die Umsetzung von Kohlenstaubpartikeln,” Ph.D. dissertation (Fakultät für Maschinenbau, Ruhr-Universität Bochum, Germany, 1996).
  7. T. Joutsenoja, J. Stenberg, R. Hernberg, M. Aho, “Pyrometric measurement of the temperature and size of individual combusting fuel particles,” Appl. Opt. 36, 1525–1535 (1997).
    [CrossRef] [PubMed]
  8. Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor the transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
    [CrossRef]
  9. J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
    [CrossRef]
  10. C. Moreau, P. Gougeon, A. Burgess, D. Ross, “Characterization of particle flows in an axial injection plasma torch,” in Eighth National Thermal Spray Conference (ASM International, Materials Park, Ohio, 1995), pp. 141–147.
  11. D. L. Black, M. Q. McQuay, M. P. Bonin, “Laser-based methods for particle-size measurement: a review of sizing methods and their industrial applications,” Prog. Energy Combust. Sci. 22, 267–306 (1996).
    [CrossRef]
  12. A. Davis, “The reflectance of coal,” in Analytical Methods for Coal and Coal Products, Vol. 1, C. Karr, ed. (Academic, New York, 1978), pp. 27–81.
  13. W. L. Grosshandler, S. L. P. Monteiro, “Attenuation of thermal radiation by pulverized coal and char,” J. Heat Transfer 104, 587–593 (1982).
    [CrossRef]
  14. A. E. Sheindlin, ed., Radiative Properties of Solid Materials (in Russian) (Energiya, Moscow, 1974), Chap. 10, pp. 338–360.
  15. R. J. Thorn, O. C. Simpson, “Spectral emittance of graphite and carbon,” J. Appl. Phys. 24, 633–639 (1953).
    [CrossRef]
  16. S. C. Jain, K. S. Krishnan, “The thermionic constants of metals and semiconductors I. Graphite,” Proc. R. Soc. A London Ser. 213, 143–157 (1952).
    [CrossRef]
  17. C. H. Prescott, W. B. Hincke, “The true temperature scale of carbon,” Phys. Rev. 31, 130–134 (1928).
    [CrossRef]
  18. T. Reichelt, T. Joutsenoja, H. Spliethoff, K. R. G. Hein, R. Hernberg, “Characterization of burning char particles under pressurized conditions by simultaneous in situ measurement of surface temperature and size,” accepted by 27th Symposium (International) on Combustion, Boulder, Colo., 2–7 August 1998.

1997 (1)

1996 (1)

D. L. Black, M. Q. McQuay, M. P. Bonin, “Laser-based methods for particle-size measurement: a review of sizing methods and their industrial applications,” Prog. Energy Combust. Sci. 22, 267–306 (1996).
[CrossRef]

1994 (1)

R. F. Cope, C. R. Monson, G. J. Germane, W. C. Hecker, “Improved diameter, velocity, and temperature measurements for char particles in drop-tube reactors,” Energ. Fuels 8, 925–931 (1994).
[CrossRef]

1993 (1)

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

1992 (1)

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor the transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
[CrossRef]

1989 (1)

T. H. Fletcher, “Time-resolved temperature measurements of individual coal particles during devolatilization,” Combust. Sci. Technol. 63, 89–105 (1989).
[CrossRef]

1988 (1)

B. C. Young, D. P. McCollor, B. J. Weber, M. L. Jones, “Temperature measurements of Beulah lignite char in a novel laminar-flow reactor,” Fuel 67, 40–44 (1988).
[CrossRef]

1982 (1)

W. L. Grosshandler, S. L. P. Monteiro, “Attenuation of thermal radiation by pulverized coal and char,” J. Heat Transfer 104, 587–593 (1982).
[CrossRef]

1953 (1)

R. J. Thorn, O. C. Simpson, “Spectral emittance of graphite and carbon,” J. Appl. Phys. 24, 633–639 (1953).
[CrossRef]

1952 (1)

S. C. Jain, K. S. Krishnan, “The thermionic constants of metals and semiconductors I. Graphite,” Proc. R. Soc. A London Ser. 213, 143–157 (1952).
[CrossRef]

1928 (1)

C. H. Prescott, W. B. Hincke, “The true temperature scale of carbon,” Phys. Rev. 31, 130–134 (1928).
[CrossRef]

Aho, M.

Black, D. L.

D. L. Black, M. Q. McQuay, M. P. Bonin, “Laser-based methods for particle-size measurement: a review of sizing methods and their industrial applications,” Prog. Energy Combust. Sci. 22, 267–306 (1996).
[CrossRef]

Bonin, M. P.

D. L. Black, M. Q. McQuay, M. P. Bonin, “Laser-based methods for particle-size measurement: a review of sizing methods and their industrial applications,” Prog. Energy Combust. Sci. 22, 267–306 (1996).
[CrossRef]

Buckius, R. O.

A. R. Schroeder, D. M. Thompson, G. G. Daves, R. O. Buckius, H. Krier, J. E. Peters, “Simultaneous particle morphology and temperature measurements of burning pulverized coal,” in Twenty-fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1161–1169.
[CrossRef]

Burgess, A.

C. Moreau, P. Gougeon, A. Burgess, D. Ross, “Characterization of particle flows in an axial injection plasma torch,” in Eighth National Thermal Spray Conference (ASM International, Materials Park, Ohio, 1995), pp. 141–147.

Cope, R. F.

R. F. Cope, C. R. Monson, G. J. Germane, W. C. Hecker, “Improved diameter, velocity, and temperature measurements for char particles in drop-tube reactors,” Energ. Fuels 8, 925–931 (1994).
[CrossRef]

Daves, G. G.

A. R. Schroeder, D. M. Thompson, G. G. Daves, R. O. Buckius, H. Krier, J. E. Peters, “Simultaneous particle morphology and temperature measurements of burning pulverized coal,” in Twenty-fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1161–1169.
[CrossRef]

Davis, A.

A. Davis, “The reflectance of coal,” in Analytical Methods for Coal and Coal Products, Vol. 1, C. Karr, ed. (Academic, New York, 1978), pp. 27–81.

Estrada, K. R.

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor the transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
[CrossRef]

Fincke, J. R.

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

Fletcher, T. H.

T. H. Fletcher, “Time-resolved temperature measurements of individual coal particles during devolatilization,” Combust. Sci. Technol. 63, 89–105 (1989).
[CrossRef]

Germane, G. J.

R. F. Cope, C. R. Monson, G. J. Germane, W. C. Hecker, “Improved diameter, velocity, and temperature measurements for char particles in drop-tube reactors,” Energ. Fuels 8, 925–931 (1994).
[CrossRef]

Gougeon, P.

C. Moreau, P. Gougeon, A. Burgess, D. Ross, “Characterization of particle flows in an axial injection plasma torch,” in Eighth National Thermal Spray Conference (ASM International, Materials Park, Ohio, 1995), pp. 141–147.

Grosshandler, W. L.

W. L. Grosshandler, S. L. P. Monteiro, “Attenuation of thermal radiation by pulverized coal and char,” J. Heat Transfer 104, 587–593 (1982).
[CrossRef]

Hecker, W. C.

R. F. Cope, C. R. Monson, G. J. Germane, W. C. Hecker, “Improved diameter, velocity, and temperature measurements for char particles in drop-tube reactors,” Energ. Fuels 8, 925–931 (1994).
[CrossRef]

Hein, K. R. G.

T. Reichelt, T. Joutsenoja, H. Spliethoff, K. R. G. Hein, R. Hernberg, “Characterization of burning char particles under pressurized conditions by simultaneous in situ measurement of surface temperature and size,” accepted by 27th Symposium (International) on Combustion, Boulder, Colo., 2–7 August 1998.

Hencken, K. R.

D. A. Tichenor, R. E. Mitchell, K. R. Hencken, S. Niksa, “Simultaneous in situ measurement of the size, temperature and velocity of particles in a combustion environment,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1213–1221.

Hernberg, R.

T. Joutsenoja, J. Stenberg, R. Hernberg, M. Aho, “Pyrometric measurement of the temperature and size of individual combusting fuel particles,” Appl. Opt. 36, 1525–1535 (1997).
[CrossRef] [PubMed]

T. Reichelt, T. Joutsenoja, H. Spliethoff, K. R. G. Hein, R. Hernberg, “Characterization of burning char particles under pressurized conditions by simultaneous in situ measurement of surface temperature and size,” accepted by 27th Symposium (International) on Combustion, Boulder, Colo., 2–7 August 1998.

Hincke, W. B.

C. H. Prescott, W. B. Hincke, “The true temperature scale of carbon,” Phys. Rev. 31, 130–134 (1928).
[CrossRef]

Hottel, H. C.

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor the transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
[CrossRef]

Jain, S. C.

S. C. Jain, K. S. Krishnan, “The thermionic constants of metals and semiconductors I. Graphite,” Proc. R. Soc. A London Ser. 213, 143–157 (1952).
[CrossRef]

Jeffery, C. L.

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

Jones, M. L.

B. C. Young, D. P. McCollor, B. J. Weber, M. L. Jones, “Temperature measurements of Beulah lignite char in a novel laminar-flow reactor,” Fuel 67, 40–44 (1988).
[CrossRef]

Joutsenoja, T.

T. Joutsenoja, J. Stenberg, R. Hernberg, M. Aho, “Pyrometric measurement of the temperature and size of individual combusting fuel particles,” Appl. Opt. 36, 1525–1535 (1997).
[CrossRef] [PubMed]

T. Reichelt, T. Joutsenoja, H. Spliethoff, K. R. G. Hein, R. Hernberg, “Characterization of burning char particles under pressurized conditions by simultaneous in situ measurement of surface temperature and size,” accepted by 27th Symposium (International) on Combustion, Boulder, Colo., 2–7 August 1998.

Krier, H.

A. R. Schroeder, D. M. Thompson, G. G. Daves, R. O. Buckius, H. Krier, J. E. Peters, “Simultaneous particle morphology and temperature measurements of burning pulverized coal,” in Twenty-fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1161–1169.
[CrossRef]

Krishnan, K. S.

S. C. Jain, K. S. Krishnan, “The thermionic constants of metals and semiconductors I. Graphite,” Proc. R. Soc. A London Ser. 213, 143–157 (1952).
[CrossRef]

Levendis, Y. A.

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor the transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
[CrossRef]

Mancuso, C. A.

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

McCollor, D. P.

B. C. Young, D. P. McCollor, B. J. Weber, M. L. Jones, “Temperature measurements of Beulah lignite char in a novel laminar-flow reactor,” Fuel 67, 40–44 (1988).
[CrossRef]

McQuay, M. Q.

D. L. Black, M. Q. McQuay, M. P. Bonin, “Laser-based methods for particle-size measurement: a review of sizing methods and their industrial applications,” Prog. Energy Combust. Sci. 22, 267–306 (1996).
[CrossRef]

Mitchell, R. E.

D. A. Tichenor, R. E. Mitchell, K. R. Hencken, S. Niksa, “Simultaneous in situ measurement of the size, temperature and velocity of particles in a combustion environment,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1213–1221.

Monson, C. R.

R. F. Cope, C. R. Monson, G. J. Germane, W. C. Hecker, “Improved diameter, velocity, and temperature measurements for char particles in drop-tube reactors,” Energ. Fuels 8, 925–931 (1994).
[CrossRef]

Monteiro, S. L. P.

W. L. Grosshandler, S. L. P. Monteiro, “Attenuation of thermal radiation by pulverized coal and char,” J. Heat Transfer 104, 587–593 (1982).
[CrossRef]

Moreau, C.

C. Moreau, P. Gougeon, A. Burgess, D. Ross, “Characterization of particle flows in an axial injection plasma torch,” in Eighth National Thermal Spray Conference (ASM International, Materials Park, Ohio, 1995), pp. 141–147.

Niksa, S.

D. A. Tichenor, R. E. Mitchell, K. R. Hencken, S. Niksa, “Simultaneous in situ measurement of the size, temperature and velocity of particles in a combustion environment,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1213–1221.

Peters, J. E.

A. R. Schroeder, D. M. Thompson, G. G. Daves, R. O. Buckius, H. Krier, J. E. Peters, “Simultaneous particle morphology and temperature measurements of burning pulverized coal,” in Twenty-fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1161–1169.
[CrossRef]

Prescott, C. H.

C. H. Prescott, W. B. Hincke, “The true temperature scale of carbon,” Phys. Rev. 31, 130–134 (1928).
[CrossRef]

Reichelt, T.

T. Reichelt, T. Joutsenoja, H. Spliethoff, K. R. G. Hein, R. Hernberg, “Characterization of burning char particles under pressurized conditions by simultaneous in situ measurement of surface temperature and size,” accepted by 27th Symposium (International) on Combustion, Boulder, Colo., 2–7 August 1998.

Ross, D.

C. Moreau, P. Gougeon, A. Burgess, D. Ross, “Characterization of particle flows in an axial injection plasma torch,” in Eighth National Thermal Spray Conference (ASM International, Materials Park, Ohio, 1995), pp. 141–147.

Scherello, A.

A. Scherello, “Experimentelle und theoretische Untersuchung des Einflusses von Aufheitzgeschwindigkeit und Druck auf die Umsetzung von Kohlenstaubpartikeln,” Ph.D. dissertation (Fakultät für Maschinenbau, Ruhr-Universität Bochum, Germany, 1996).

Schroeder, A. R.

A. R. Schroeder, D. M. Thompson, G. G. Daves, R. O. Buckius, H. Krier, J. E. Peters, “Simultaneous particle morphology and temperature measurements of burning pulverized coal,” in Twenty-fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1161–1169.
[CrossRef]

Simpson, O. C.

R. J. Thorn, O. C. Simpson, “Spectral emittance of graphite and carbon,” J. Appl. Phys. 24, 633–639 (1953).
[CrossRef]

Spliethoff, H.

T. Reichelt, T. Joutsenoja, H. Spliethoff, K. R. G. Hein, R. Hernberg, “Characterization of burning char particles under pressurized conditions by simultaneous in situ measurement of surface temperature and size,” accepted by 27th Symposium (International) on Combustion, Boulder, Colo., 2–7 August 1998.

Stenberg, J.

Swank, W. D.

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

Thompson, D. M.

A. R. Schroeder, D. M. Thompson, G. G. Daves, R. O. Buckius, H. Krier, J. E. Peters, “Simultaneous particle morphology and temperature measurements of burning pulverized coal,” in Twenty-fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1161–1169.
[CrossRef]

Thorn, R. J.

R. J. Thorn, O. C. Simpson, “Spectral emittance of graphite and carbon,” J. Appl. Phys. 24, 633–639 (1953).
[CrossRef]

Tichenor, D. A.

D. A. Tichenor, R. E. Mitchell, K. R. Hencken, S. Niksa, “Simultaneous in situ measurement of the size, temperature and velocity of particles in a combustion environment,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1213–1221.

Weber, B. J.

B. C. Young, D. P. McCollor, B. J. Weber, M. L. Jones, “Temperature measurements of Beulah lignite char in a novel laminar-flow reactor,” Fuel 67, 40–44 (1988).
[CrossRef]

Young, B. C.

B. C. Young, D. P. McCollor, B. J. Weber, M. L. Jones, “Temperature measurements of Beulah lignite char in a novel laminar-flow reactor,” Fuel 67, 40–44 (1988).
[CrossRef]

Appl. Opt. (1)

Combust. Sci. Technol. (1)

T. H. Fletcher, “Time-resolved temperature measurements of individual coal particles during devolatilization,” Combust. Sci. Technol. 63, 89–105 (1989).
[CrossRef]

Energ. Fuels (1)

R. F. Cope, C. R. Monson, G. J. Germane, W. C. Hecker, “Improved diameter, velocity, and temperature measurements for char particles in drop-tube reactors,” Energ. Fuels 8, 925–931 (1994).
[CrossRef]

Fuel (1)

B. C. Young, D. P. McCollor, B. J. Weber, M. L. Jones, “Temperature measurements of Beulah lignite char in a novel laminar-flow reactor,” Fuel 67, 40–44 (1988).
[CrossRef]

J. Appl. Phys. (1)

R. J. Thorn, O. C. Simpson, “Spectral emittance of graphite and carbon,” J. Appl. Phys. 24, 633–639 (1953).
[CrossRef]

J. Heat Transfer (1)

W. L. Grosshandler, S. L. P. Monteiro, “Attenuation of thermal radiation by pulverized coal and char,” J. Heat Transfer 104, 587–593 (1982).
[CrossRef]

Meas. Sci. Technol. (1)

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

Phys. Rev. (1)

C. H. Prescott, W. B. Hincke, “The true temperature scale of carbon,” Phys. Rev. 31, 130–134 (1928).
[CrossRef]

Proc. R. Soc. A London Ser. (1)

S. C. Jain, K. S. Krishnan, “The thermionic constants of metals and semiconductors I. Graphite,” Proc. R. Soc. A London Ser. 213, 143–157 (1952).
[CrossRef]

Prog. Energy Combust. Sci. (1)

D. L. Black, M. Q. McQuay, M. P. Bonin, “Laser-based methods for particle-size measurement: a review of sizing methods and their industrial applications,” Prog. Energy Combust. Sci. 22, 267–306 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor the transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
[CrossRef]

Other (7)

T. Reichelt, T. Joutsenoja, H. Spliethoff, K. R. G. Hein, R. Hernberg, “Characterization of burning char particles under pressurized conditions by simultaneous in situ measurement of surface temperature and size,” accepted by 27th Symposium (International) on Combustion, Boulder, Colo., 2–7 August 1998.

D. A. Tichenor, R. E. Mitchell, K. R. Hencken, S. Niksa, “Simultaneous in situ measurement of the size, temperature and velocity of particles in a combustion environment,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1213–1221.

A. R. Schroeder, D. M. Thompson, G. G. Daves, R. O. Buckius, H. Krier, J. E. Peters, “Simultaneous particle morphology and temperature measurements of burning pulverized coal,” in Twenty-fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1161–1169.
[CrossRef]

A. Scherello, “Experimentelle und theoretische Untersuchung des Einflusses von Aufheitzgeschwindigkeit und Druck auf die Umsetzung von Kohlenstaubpartikeln,” Ph.D. dissertation (Fakultät für Maschinenbau, Ruhr-Universität Bochum, Germany, 1996).

A. Davis, “The reflectance of coal,” in Analytical Methods for Coal and Coal Products, Vol. 1, C. Karr, ed. (Academic, New York, 1978), pp. 27–81.

C. Moreau, P. Gougeon, A. Burgess, D. Ross, “Characterization of particle flows in an axial injection plasma torch,” in Eighth National Thermal Spray Conference (ASM International, Materials Park, Ohio, 1995), pp. 141–147.

A. E. Sheindlin, ed., Radiative Properties of Solid Materials (in Russian) (Energiya, Moscow, 1974), Chap. 10, pp. 338–360.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical setup of the pyrometric particle measurements at an entrained flow reactor.

Fig. 2
Fig. 2

Time dependence of primary and reference signals when a fuel particle passes through the FOV of the optical probe.

Fig. 3
Fig. 3

Region of full visibility for particles of different size. The maximum deviation from the center line of FOV dr as a function of deviation from focal plane dx. The walls of the 70-mm reactor tube are indicated by dashed lines (effective focal length, 190 mm; fiber diameter, 1 mm; distance from optics to focal plane, 710 mm; lens aperture, 25 mm; magnification, 0.366).

Fig. 4
Fig. 4

Typical signal pulses measured at a PEFR. Pulses (a), (b), and (c) are accepted for particle sizing, whereas pulses (d), (e), and (f) are rejected. The particle temperature can be determined in all six cases. Primary signals are shifted upward for clarity (Garzweiler brown coal, T g = 1370 K; p = 0.3 MPa; c[O2] = 12 vol.%, t r = 300 ms).

Fig. 5
Fig. 5

Results of the particle temperature and size measurement of pulverized graphite in a pure nitrogen environment at two gas temperatures: (a) Temperature T p and size D p of individual particles. (b) Temperature distributions measured at both gas temperatures. (c), (d) Size distribution measured at 1662 and 1504 K. (e) Initial size distribution measured by optical imaging. The average value and the standard deviation are also given for each distribution (p = 0.15 MPa, t r = 150 ms).

Fig. 6
Fig. 6

Particle temperature T p and size D p of individual (a) Göttelborn high volatile bituminous coal and (b) Garzweiler brown coal particles. The process conditions were fixed during measurement of the population. The detection limit of the pyrometric device (solid curves) and the estimated gas temperature (dashed lines) are also indicated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R 1 - R 01 / R 2 - R 02 = F 1 T p - R 01 / F 2 T p - R 02 ,
ε p A p / A 0 = R i - R 0 i / F i T p - R 0 i ,

Metrics