Abstract

An experimental system in which correlated photons for radiometric measurements were used has been set up at the National Institute of Standards and Technology. We use visible-IR pairs of correlated photons produced by means of optical parametric downconversion to measure the radiance of a high-temperature IR source at 3.415 and 4.772 μm in an intrinsically absolute manner (i.e., without requiring any externally calibrated radiometric standard). To our knowledge, this is the only radiometric method with which one measures radiance directly, instead of using radiant power and aperture geometry measurements to deduce radiance indirectly. This technique has an additional unusual characteristic: It allows absolute radiometric measurements of IR radiation to be made with high-quality visible detectors. We compare measurements made with this technique with radiance measurements made with conventional means tied to existing radiometric standards. These comparisons show an average agreement to within ∼3% between the two methods. The results demonstrate an accuracy consistent with the estimated uncertainty of the current measurements. This is the first time to our knowledge that this method has been used to provide absolute radiance measurements of a source that has been calibrated conventionally, revealing unexpected systematic effects and allowing estimates of the ultimate accuracy of this method. In addition, these measurements are further into the IR than any previous measurements of this process and have produced the highest thermally stimulated downconversion signal yet seen.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Sov. J. Quantum Electron. 7, 591–594 (1977).
    [CrossRef]
  2. D. N. Klyshko, Photons and Nonlinear Optics (Gordon & Breach, New York, 1988), p. 325.
  3. A. A. Malygin, A. N. Penin, A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field,” Sov. Phys. JETP Lett. 33, 477–480 (1981).
  4. J. G. Rarity, K. D. Ridley, P. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26, 4616–4619 (1987).
    [CrossRef] [PubMed]
  5. S. R. Bowman, Y. H. Shih, C. O. Alley, “The use of Geiger mode avalanche photodiodes for precise laser ranging at very low light levels: an experimental evaluation,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds., Proc. SPIE663, 24–29 (1986).
  6. A. N. Penin, A. V. Sergienko, “Absolute standardless calibration of photodetectors based on quantum two-photon fields,” Appl. Opt. 30, 3582–3588 (1991).
    [CrossRef] [PubMed]
  7. V. M. Ginzburg, N. G. Keratishvili, E. L. Korzhenevich, G. V. Lunev, A. N. Penin, V. I. Sapritsky, “Absolute meter of photodetector quantum efficiency based on the parametric down-conversion effect,” Opt. Eng. 32, 2911–2916 (1993).
    [CrossRef]
  8. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt. 33, 1844–1853 (1994).
    [CrossRef] [PubMed]
  9. A. N. Penin, G. Kh. Kitaeva, A. V. Sergienko, “Nondestructive measurement of intensity of optical fields using spontaneous parametric down conversion,” in Quantum Electronics and Laser Science, Vol. 11 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 110–112.
  10. G. Kh. Kitaeva, A. N. Penin, V. V. Fadeev, Yu. A. Yanait, “Measurement of brightness of light fluxes using vacuum fluctuations as a reference,” Sov. Phys. Dokl. 24, 564–566 (1979).
  11. A. L. Migdall, R. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
    [CrossRef]
  12. W. H. Louisell, A. Yariv, A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124, 1646–1654 (1961).
    [CrossRef]
  13. J. E. Midwinter, J. Warner, “The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization,” Br. J. Appl. Phys. 16, 1135–1142 (1965).
    [CrossRef]
  14. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurement of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
    [CrossRef]
  15. Although a small residual signal (which may have been due to imperfect beam polarization or an imperfect crystal) was seen as the waveplate was rotated, it was not of a size to affect the main conclusions of this study. This will be explored further as higher-accuracy comparisons are made.
  16. EG&G Optoelectronics, 22001, Dumberry, Vaudreuil (Quebec) Canada J7V 8P7. Certain trade names and company products are mentioned in the text or identified in an illustration to provide an adequate specification of the experimental procedure and the equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.
  17. Schott Glass Technologies Inc. York Ave., Duryea, PA 18642. Certain trade names and company products are mentioned in the text or identified in an illustration to provide an adequate specification of the experimental procedure and the equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.
  18. J. M. Bridges, W. R. Ott, “Vacuum ultraviolet radiometry. 3. the argon mini-arc as a new secondary standard of spectral radiance,” Appl. Opt. 16, 367–376 (1977).
    [CrossRef] [PubMed]
  19. J. Z. Klose, J. M. Bridges, W. R. Ott, “Radiometric calibrations of portable sources in the vacuum ultraviolet,” J. Res. Natl. Bur. Stand. 93, 21–39 (1988).
    [CrossRef]
  20. J. M. Bridges, A. L. Migdall, “Characterization of argon arc source in the infrared,” Metrologia 32, 625–628 (1995/96).
    [CrossRef]
  21. A. L. Migdall, G. Eppeldauer, C. Cromer, “Cryogenic optical systems and instruments. VI,” J. Heaney, L. Burriesci, eds., Proc. SPIE 2227, 46–53 (1994).
    [CrossRef]
  22. B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (1994), p. 3.
  23. J. Walker, R. D. Saunders, A. T. Hattenburg, “Spectral radiance calibrations,” Natl. Bur. Stands. Special Publication 250-1, 1987 (U.S. Government Printing Office, Washington, D.C., 1987), p. A-4.

1996 (1)

A. L. Migdall, R. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

1994 (2)

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt. 33, 1844–1853 (1994).
[CrossRef] [PubMed]

A. L. Migdall, G. Eppeldauer, C. Cromer, “Cryogenic optical systems and instruments. VI,” J. Heaney, L. Burriesci, eds., Proc. SPIE 2227, 46–53 (1994).
[CrossRef]

1993 (1)

V. M. Ginzburg, N. G. Keratishvili, E. L. Korzhenevich, G. V. Lunev, A. N. Penin, V. I. Sapritsky, “Absolute meter of photodetector quantum efficiency based on the parametric down-conversion effect,” Opt. Eng. 32, 2911–2916 (1993).
[CrossRef]

1991 (1)

1988 (1)

J. Z. Klose, J. M. Bridges, W. R. Ott, “Radiometric calibrations of portable sources in the vacuum ultraviolet,” J. Res. Natl. Bur. Stand. 93, 21–39 (1988).
[CrossRef]

1987 (1)

1981 (1)

A. A. Malygin, A. N. Penin, A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field,” Sov. Phys. JETP Lett. 33, 477–480 (1981).

1979 (1)

G. Kh. Kitaeva, A. N. Penin, V. V. Fadeev, Yu. A. Yanait, “Measurement of brightness of light fluxes using vacuum fluctuations as a reference,” Sov. Phys. Dokl. 24, 564–566 (1979).

1977 (2)

D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Sov. J. Quantum Electron. 7, 591–594 (1977).
[CrossRef]

J. M. Bridges, W. R. Ott, “Vacuum ultraviolet radiometry. 3. the argon mini-arc as a new secondary standard of spectral radiance,” Appl. Opt. 16, 367–376 (1977).
[CrossRef] [PubMed]

1976 (1)

M. Choy, R. L. Byer, “Accurate second-order susceptibility measurement of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

1965 (1)

J. E. Midwinter, J. Warner, “The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization,” Br. J. Appl. Phys. 16, 1135–1142 (1965).
[CrossRef]

1961 (1)

W. H. Louisell, A. Yariv, A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124, 1646–1654 (1961).
[CrossRef]

Alley, C. O.

S. R. Bowman, Y. H. Shih, C. O. Alley, “The use of Geiger mode avalanche photodiodes for precise laser ranging at very low light levels: an experimental evaluation,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds., Proc. SPIE663, 24–29 (1986).

Bowman, S. R.

S. R. Bowman, Y. H. Shih, C. O. Alley, “The use of Geiger mode avalanche photodiodes for precise laser ranging at very low light levels: an experimental evaluation,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds., Proc. SPIE663, 24–29 (1986).

Bridges, J. M.

J. M. Bridges, A. L. Migdall, “Characterization of argon arc source in the infrared,” Metrologia 32, 625–628 (1995/96).
[CrossRef]

J. Z. Klose, J. M. Bridges, W. R. Ott, “Radiometric calibrations of portable sources in the vacuum ultraviolet,” J. Res. Natl. Bur. Stand. 93, 21–39 (1988).
[CrossRef]

J. M. Bridges, W. R. Ott, “Vacuum ultraviolet radiometry. 3. the argon mini-arc as a new secondary standard of spectral radiance,” Appl. Opt. 16, 367–376 (1977).
[CrossRef] [PubMed]

Byer, R. L.

M. Choy, R. L. Byer, “Accurate second-order susceptibility measurement of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

Chiao, R. Y.

Choy, M.

M. Choy, R. L. Byer, “Accurate second-order susceptibility measurement of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

Cromer, C.

A. L. Migdall, G. Eppeldauer, C. Cromer, “Cryogenic optical systems and instruments. VI,” J. Heaney, L. Burriesci, eds., Proc. SPIE 2227, 46–53 (1994).
[CrossRef]

Datla, R.

A. L. Migdall, R. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

Eberhard, P. H.

Eppeldauer, G.

A. L. Migdall, G. Eppeldauer, C. Cromer, “Cryogenic optical systems and instruments. VI,” J. Heaney, L. Burriesci, eds., Proc. SPIE 2227, 46–53 (1994).
[CrossRef]

Fadeev, V. V.

G. Kh. Kitaeva, A. N. Penin, V. V. Fadeev, Yu. A. Yanait, “Measurement of brightness of light fluxes using vacuum fluctuations as a reference,” Sov. Phys. Dokl. 24, 564–566 (1979).

Ginzburg, V. M.

V. M. Ginzburg, N. G. Keratishvili, E. L. Korzhenevich, G. V. Lunev, A. N. Penin, V. I. Sapritsky, “Absolute meter of photodetector quantum efficiency based on the parametric down-conversion effect,” Opt. Eng. 32, 2911–2916 (1993).
[CrossRef]

Hattenburg, A. T.

J. Walker, R. D. Saunders, A. T. Hattenburg, “Spectral radiance calibrations,” Natl. Bur. Stands. Special Publication 250-1, 1987 (U.S. Government Printing Office, Washington, D.C., 1987), p. A-4.

Keratishvili, N. G.

V. M. Ginzburg, N. G. Keratishvili, E. L. Korzhenevich, G. V. Lunev, A. N. Penin, V. I. Sapritsky, “Absolute meter of photodetector quantum efficiency based on the parametric down-conversion effect,” Opt. Eng. 32, 2911–2916 (1993).
[CrossRef]

Kitaeva, G. Kh.

G. Kh. Kitaeva, A. N. Penin, V. V. Fadeev, Yu. A. Yanait, “Measurement of brightness of light fluxes using vacuum fluctuations as a reference,” Sov. Phys. Dokl. 24, 564–566 (1979).

A. N. Penin, G. Kh. Kitaeva, A. V. Sergienko, “Nondestructive measurement of intensity of optical fields using spontaneous parametric down conversion,” in Quantum Electronics and Laser Science, Vol. 11 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 110–112.

Klose, J. Z.

J. Z. Klose, J. M. Bridges, W. R. Ott, “Radiometric calibrations of portable sources in the vacuum ultraviolet,” J. Res. Natl. Bur. Stand. 93, 21–39 (1988).
[CrossRef]

Klyshko, D. N.

D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Sov. J. Quantum Electron. 7, 591–594 (1977).
[CrossRef]

D. N. Klyshko, Photons and Nonlinear Optics (Gordon & Breach, New York, 1988), p. 325.

Korzhenevich, E. L.

V. M. Ginzburg, N. G. Keratishvili, E. L. Korzhenevich, G. V. Lunev, A. N. Penin, V. I. Sapritsky, “Absolute meter of photodetector quantum efficiency based on the parametric down-conversion effect,” Opt. Eng. 32, 2911–2916 (1993).
[CrossRef]

Kuyatt, C. E.

B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (1994), p. 3.

Kwiat, P. G.

Louisell, W. H.

W. H. Louisell, A. Yariv, A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124, 1646–1654 (1961).
[CrossRef]

Lunev, G. V.

V. M. Ginzburg, N. G. Keratishvili, E. L. Korzhenevich, G. V. Lunev, A. N. Penin, V. I. Sapritsky, “Absolute meter of photodetector quantum efficiency based on the parametric down-conversion effect,” Opt. Eng. 32, 2911–2916 (1993).
[CrossRef]

Malygin, A. A.

A. A. Malygin, A. N. Penin, A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field,” Sov. Phys. JETP Lett. 33, 477–480 (1981).

Midwinter, J. E.

J. E. Midwinter, J. Warner, “The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization,” Br. J. Appl. Phys. 16, 1135–1142 (1965).
[CrossRef]

Migdall, A. L.

A. L. Migdall, R. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

J. M. Bridges, A. L. Migdall, “Characterization of argon arc source in the infrared,” Metrologia 32, 625–628 (1995/96).
[CrossRef]

A. L. Migdall, G. Eppeldauer, C. Cromer, “Cryogenic optical systems and instruments. VI,” J. Heaney, L. Burriesci, eds., Proc. SPIE 2227, 46–53 (1994).
[CrossRef]

Orszak, J. S.

A. L. Migdall, R. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

Ott, W. R.

J. Z. Klose, J. M. Bridges, W. R. Ott, “Radiometric calibrations of portable sources in the vacuum ultraviolet,” J. Res. Natl. Bur. Stand. 93, 21–39 (1988).
[CrossRef]

J. M. Bridges, W. R. Ott, “Vacuum ultraviolet radiometry. 3. the argon mini-arc as a new secondary standard of spectral radiance,” Appl. Opt. 16, 367–376 (1977).
[CrossRef] [PubMed]

Penin, A. N.

V. M. Ginzburg, N. G. Keratishvili, E. L. Korzhenevich, G. V. Lunev, A. N. Penin, V. I. Sapritsky, “Absolute meter of photodetector quantum efficiency based on the parametric down-conversion effect,” Opt. Eng. 32, 2911–2916 (1993).
[CrossRef]

A. N. Penin, A. V. Sergienko, “Absolute standardless calibration of photodetectors based on quantum two-photon fields,” Appl. Opt. 30, 3582–3588 (1991).
[CrossRef] [PubMed]

A. A. Malygin, A. N. Penin, A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field,” Sov. Phys. JETP Lett. 33, 477–480 (1981).

G. Kh. Kitaeva, A. N. Penin, V. V. Fadeev, Yu. A. Yanait, “Measurement of brightness of light fluxes using vacuum fluctuations as a reference,” Sov. Phys. Dokl. 24, 564–566 (1979).

A. N. Penin, G. Kh. Kitaeva, A. V. Sergienko, “Nondestructive measurement of intensity of optical fields using spontaneous parametric down conversion,” in Quantum Electronics and Laser Science, Vol. 11 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 110–112.

Petroff, M. D.

Rarity, J. G.

Ridley, K. D.

Sapritsky, V. I.

V. M. Ginzburg, N. G. Keratishvili, E. L. Korzhenevich, G. V. Lunev, A. N. Penin, V. I. Sapritsky, “Absolute meter of photodetector quantum efficiency based on the parametric down-conversion effect,” Opt. Eng. 32, 2911–2916 (1993).
[CrossRef]

Saunders, R. D.

J. Walker, R. D. Saunders, A. T. Hattenburg, “Spectral radiance calibrations,” Natl. Bur. Stands. Special Publication 250-1, 1987 (U.S. Government Printing Office, Washington, D.C., 1987), p. A-4.

Sergienko, A.

A. L. Migdall, R. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

Sergienko, A. V.

A. N. Penin, A. V. Sergienko, “Absolute standardless calibration of photodetectors based on quantum two-photon fields,” Appl. Opt. 30, 3582–3588 (1991).
[CrossRef] [PubMed]

A. A. Malygin, A. N. Penin, A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field,” Sov. Phys. JETP Lett. 33, 477–480 (1981).

A. N. Penin, G. Kh. Kitaeva, A. V. Sergienko, “Nondestructive measurement of intensity of optical fields using spontaneous parametric down conversion,” in Quantum Electronics and Laser Science, Vol. 11 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 110–112.

Shih, Y. H.

A. L. Migdall, R. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

S. R. Bowman, Y. H. Shih, C. O. Alley, “The use of Geiger mode avalanche photodiodes for precise laser ranging at very low light levels: an experimental evaluation,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds., Proc. SPIE663, 24–29 (1986).

Siegman, A. E.

W. H. Louisell, A. Yariv, A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124, 1646–1654 (1961).
[CrossRef]

Steinberg, A. M.

Tapster, P.

Taylor, B. N.

B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (1994), p. 3.

Walker, J.

J. Walker, R. D. Saunders, A. T. Hattenburg, “Spectral radiance calibrations,” Natl. Bur. Stands. Special Publication 250-1, 1987 (U.S. Government Printing Office, Washington, D.C., 1987), p. A-4.

Warner, J.

J. E. Midwinter, J. Warner, “The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization,” Br. J. Appl. Phys. 16, 1135–1142 (1965).
[CrossRef]

Yanait, Yu. A.

G. Kh. Kitaeva, A. N. Penin, V. V. Fadeev, Yu. A. Yanait, “Measurement of brightness of light fluxes using vacuum fluctuations as a reference,” Sov. Phys. Dokl. 24, 564–566 (1979).

Yariv, A.

W. H. Louisell, A. Yariv, A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124, 1646–1654 (1961).
[CrossRef]

Appl. Opt. (4)

Br. J. Appl. Phys. (1)

J. E. Midwinter, J. Warner, “The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization,” Br. J. Appl. Phys. 16, 1135–1142 (1965).
[CrossRef]

J. Res. Natl. Bur. Stand. (1)

J. Z. Klose, J. M. Bridges, W. R. Ott, “Radiometric calibrations of portable sources in the vacuum ultraviolet,” J. Res. Natl. Bur. Stand. 93, 21–39 (1988).
[CrossRef]

Metrologia (2)

J. M. Bridges, A. L. Migdall, “Characterization of argon arc source in the infrared,” Metrologia 32, 625–628 (1995/96).
[CrossRef]

A. L. Migdall, R. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

Opt. Eng. (1)

V. M. Ginzburg, N. G. Keratishvili, E. L. Korzhenevich, G. V. Lunev, A. N. Penin, V. I. Sapritsky, “Absolute meter of photodetector quantum efficiency based on the parametric down-conversion effect,” Opt. Eng. 32, 2911–2916 (1993).
[CrossRef]

Phys. Rev. (1)

W. H. Louisell, A. Yariv, A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124, 1646–1654 (1961).
[CrossRef]

Phys. Rev. B (1)

M. Choy, R. L. Byer, “Accurate second-order susceptibility measurement of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

Proc. SPIE (1)

A. L. Migdall, G. Eppeldauer, C. Cromer, “Cryogenic optical systems and instruments. VI,” J. Heaney, L. Burriesci, eds., Proc. SPIE 2227, 46–53 (1994).
[CrossRef]

Sov. J. Quantum Electron. (1)

D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Sov. J. Quantum Electron. 7, 591–594 (1977).
[CrossRef]

Sov. Phys. Dokl. (1)

G. Kh. Kitaeva, A. N. Penin, V. V. Fadeev, Yu. A. Yanait, “Measurement of brightness of light fluxes using vacuum fluctuations as a reference,” Sov. Phys. Dokl. 24, 564–566 (1979).

Sov. Phys. JETP Lett. (1)

A. A. Malygin, A. N. Penin, A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field,” Sov. Phys. JETP Lett. 33, 477–480 (1981).

Other (8)

Although a small residual signal (which may have been due to imperfect beam polarization or an imperfect crystal) was seen as the waveplate was rotated, it was not of a size to affect the main conclusions of this study. This will be explored further as higher-accuracy comparisons are made.

EG&G Optoelectronics, 22001, Dumberry, Vaudreuil (Quebec) Canada J7V 8P7. Certain trade names and company products are mentioned in the text or identified in an illustration to provide an adequate specification of the experimental procedure and the equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.

Schott Glass Technologies Inc. York Ave., Duryea, PA 18642. Certain trade names and company products are mentioned in the text or identified in an illustration to provide an adequate specification of the experimental procedure and the equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.

D. N. Klyshko, Photons and Nonlinear Optics (Gordon & Breach, New York, 1988), p. 325.

S. R. Bowman, Y. H. Shih, C. O. Alley, “The use of Geiger mode avalanche photodiodes for precise laser ranging at very low light levels: an experimental evaluation,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds., Proc. SPIE663, 24–29 (1986).

A. N. Penin, G. Kh. Kitaeva, A. V. Sergienko, “Nondestructive measurement of intensity of optical fields using spontaneous parametric down conversion,” in Quantum Electronics and Laser Science, Vol. 11 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 110–112.

B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (1994), p. 3.

J. Walker, R. D. Saunders, A. T. Hattenburg, “Spectral radiance calibrations,” Natl. Bur. Stands. Special Publication 250-1, 1987 (U.S. Government Printing Office, Washington, D.C., 1987), p. A-4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scheme for absolute radiance measurement with PDC. (b) Diagram of pump and IR beam interaction region size as viewed from above; x is the horizontal direction across the interaction region at the output face of the crystal.

Fig. 2
Fig. 2

Spontaneous PDC signal and the ratio of stimulated-to-spontaneous PDC signal versus detection angle for the two pairs of downconverted wavelengths: (a) 528.8 nm to 3.415 μm and (b) 506.5 nm–4.772 μm. (The origin of the angle scale was arbitrarily set near the peak of the signal.) The solid curves are fits to Gaussian profiles with the FWHM indicated.

Fig. 3
Fig. 3

Conventional measurement of arc radiance converted into units of photons per mode. The arrows indicate the wavelengths at which the two correlated photon radiance measurements were taken. The horizontal lines show the bandpasses (FWHM) of the correlated photon measurements.

Tables (2)

Tables Icon

Table 1 Summary of Geometric Bandpass Parametersa

Tables Icon

Table 2 Radiance Measurement Method Comparison Results and Uncertaintiesa

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ω p = ω 1 + ω 2 ,
k p = k 1 + k 2 ,
L λ = c 4 π   u ,     u = ρ n ¯   hc λ ,     ρ = 4 π λ 4 ,
L λ = hc 2 λ 5   n ¯ .
H I = 1 2     d ν P · E = 1 2     d ν χ ijk 2 E i r ,   t E j r ,   t E k r ,   t ,
a 1 t = exp - i ω 1 t a 10   cosh   gt + i exp - i φ a 20   sinh   gt , a 2 t = exp + i ω 2 t a 20   cosh   gt - i exp + i φ a 10   sinh   gt ,
n 1 t = a 1 t a 1 t = n 10   cosh 2   gt + 1 + n 20 sinh 2   gt , n 2 t = a 2 t a 2 t = n 20   cosh 2   gt + 1 + n 10 sinh 2   gt ,
n 1 on n 1 off = 1 + n 20 on sinh 2   gt 1 + n 20 off sinh 2   gt = 1 + n 20 on ,
I x = x - L   sin   θ int λ vis / 2 x + L   sin   θ int λ vis / 2 exp - 2 x 2 / w p 2 d x ,
Δ θ source λ vis = I FWHM * cos θ ext λ vis / D ,
Δ λ vis geom = Δ θ source & det & pump λ vis d θ ext λ vis / d λ vis ,
R = n 20 on ε = n 1 on n 1 off - 1 ε ,

Metrics