Abstract

A fiber-optic intensity sensor has been developed for vertically positioning microelectrode arrays above the retina of a live frog. Closely spaced fibers illuminate and collect reflections from the retinal surface, and the output is electronically processed to drive an automated positioning circuit. Experimental and theoretical evaluations of fiber types and separation for both specular and diffuse reflectors, in vitro and in vivo, are presented, and multimode fibers on 125-μm centers are chosen for retinal experimentation. The sensor has applications in assessing spatial selectivity of stimulation of a multielectrode array and may be adaptable for lateral positioning.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Humayan, R. Propst, E. de Juan, K. McCormick, D. Hickingbotham, “Bipolar surface electrical stimulation of the vertebrate retina,” Arch. Ophthalmol. 112, 110–111 (1994).
    [CrossRef]
  2. J. L. Wyatt, J. F. Rizzo, A. Grumet, D. Edell, R. J. Jensen, “Development of a silicon retinal implant: epiretinal stimulation of retinal ganglion cells in the rabbit,” Invest. Ophthalmol. Visual Sci. 35, 1380–1381 (1994).
  3. R. Braham, “Toward an artificial eye,” Special Report, IEEE Spectrum 33, 20–69 (1996).
  4. E. N. Warman, W. M. Grill, D. Durand, “Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds,” IEEE Trans. Biomed. Eng. 39, 1244–1254 (1992).
    [CrossRef] [PubMed]
  5. N. S. Peachey, “Use of microphotodiode implants to restore retinal function: a pilot study,” J. Rehabil. Res. Dev. 30–31, 307–308 (1994).
  6. K. Cha, K. Horch, R. A. Normann, “Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system,” Ann. Biomed. Eng. 20, 439–449 (1992).
    [CrossRef] [PubMed]
  7. M. S. Humayan, E. de Juan, G. Dagnelie, R. J. Greenberg, R. H. Propst, D. H. Phillips, “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol. 114, 40–46 (1996).
    [CrossRef]
  8. M. Meister, J. Pine, D. A. Baylor, “Multi-neuronal signals from the retina: acquisition and analysis,” J. Neurosci. Methods 51, 95–106 (1994).
    [CrossRef] [PubMed]
  9. M. J. M. Lankheet, J. Molenaar, W. A. van de Grind, “The spike generating mechanism of cat retinal ganglion cells,” Vis. Res. 29, 505–517 (1989).
    [CrossRef] [PubMed]
  10. W. M. Grill, J. T. Mortimer, “Stimulus waveforms for selective neural stimulation,” IEEE Eng. Med. Biol. Mag. 14, 375–385 (1995).
    [CrossRef]
  11. E. Udd, ed., Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).
  12. R. O. Cook, C. W. Hamm, “Fiber optic level displacement transducer,” Appl. Opt. 18, 3230–3241 (1979).
    [CrossRef] [PubMed]
  13. J. Gordon, D. C. Hood, “Anatomy and physiology of the frog retina,” in The Amphibian Visual System: A Multidisciplinary Approach, K. V. Fite, ed. (Academic, New York, 1976), Chap. 2.

1996 (2)

R. Braham, “Toward an artificial eye,” Special Report, IEEE Spectrum 33, 20–69 (1996).

M. S. Humayan, E. de Juan, G. Dagnelie, R. J. Greenberg, R. H. Propst, D. H. Phillips, “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol. 114, 40–46 (1996).
[CrossRef]

1995 (1)

W. M. Grill, J. T. Mortimer, “Stimulus waveforms for selective neural stimulation,” IEEE Eng. Med. Biol. Mag. 14, 375–385 (1995).
[CrossRef]

1994 (4)

M. Meister, J. Pine, D. A. Baylor, “Multi-neuronal signals from the retina: acquisition and analysis,” J. Neurosci. Methods 51, 95–106 (1994).
[CrossRef] [PubMed]

N. S. Peachey, “Use of microphotodiode implants to restore retinal function: a pilot study,” J. Rehabil. Res. Dev. 30–31, 307–308 (1994).

M. Humayan, R. Propst, E. de Juan, K. McCormick, D. Hickingbotham, “Bipolar surface electrical stimulation of the vertebrate retina,” Arch. Ophthalmol. 112, 110–111 (1994).
[CrossRef]

J. L. Wyatt, J. F. Rizzo, A. Grumet, D. Edell, R. J. Jensen, “Development of a silicon retinal implant: epiretinal stimulation of retinal ganglion cells in the rabbit,” Invest. Ophthalmol. Visual Sci. 35, 1380–1381 (1994).

1992 (2)

E. N. Warman, W. M. Grill, D. Durand, “Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds,” IEEE Trans. Biomed. Eng. 39, 1244–1254 (1992).
[CrossRef] [PubMed]

K. Cha, K. Horch, R. A. Normann, “Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system,” Ann. Biomed. Eng. 20, 439–449 (1992).
[CrossRef] [PubMed]

1989 (1)

M. J. M. Lankheet, J. Molenaar, W. A. van de Grind, “The spike generating mechanism of cat retinal ganglion cells,” Vis. Res. 29, 505–517 (1989).
[CrossRef] [PubMed]

1979 (1)

Baylor, D. A.

M. Meister, J. Pine, D. A. Baylor, “Multi-neuronal signals from the retina: acquisition and analysis,” J. Neurosci. Methods 51, 95–106 (1994).
[CrossRef] [PubMed]

Braham, R.

R. Braham, “Toward an artificial eye,” Special Report, IEEE Spectrum 33, 20–69 (1996).

Cha, K.

K. Cha, K. Horch, R. A. Normann, “Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system,” Ann. Biomed. Eng. 20, 439–449 (1992).
[CrossRef] [PubMed]

Cook, R. O.

Dagnelie, G.

M. S. Humayan, E. de Juan, G. Dagnelie, R. J. Greenberg, R. H. Propst, D. H. Phillips, “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol. 114, 40–46 (1996).
[CrossRef]

de Juan, E.

M. S. Humayan, E. de Juan, G. Dagnelie, R. J. Greenberg, R. H. Propst, D. H. Phillips, “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol. 114, 40–46 (1996).
[CrossRef]

M. Humayan, R. Propst, E. de Juan, K. McCormick, D. Hickingbotham, “Bipolar surface electrical stimulation of the vertebrate retina,” Arch. Ophthalmol. 112, 110–111 (1994).
[CrossRef]

Durand, D.

E. N. Warman, W. M. Grill, D. Durand, “Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds,” IEEE Trans. Biomed. Eng. 39, 1244–1254 (1992).
[CrossRef] [PubMed]

Edell, D.

J. L. Wyatt, J. F. Rizzo, A. Grumet, D. Edell, R. J. Jensen, “Development of a silicon retinal implant: epiretinal stimulation of retinal ganglion cells in the rabbit,” Invest. Ophthalmol. Visual Sci. 35, 1380–1381 (1994).

Gordon, J.

J. Gordon, D. C. Hood, “Anatomy and physiology of the frog retina,” in The Amphibian Visual System: A Multidisciplinary Approach, K. V. Fite, ed. (Academic, New York, 1976), Chap. 2.

Greenberg, R. J.

M. S. Humayan, E. de Juan, G. Dagnelie, R. J. Greenberg, R. H. Propst, D. H. Phillips, “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol. 114, 40–46 (1996).
[CrossRef]

Grill, W. M.

W. M. Grill, J. T. Mortimer, “Stimulus waveforms for selective neural stimulation,” IEEE Eng. Med. Biol. Mag. 14, 375–385 (1995).
[CrossRef]

E. N. Warman, W. M. Grill, D. Durand, “Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds,” IEEE Trans. Biomed. Eng. 39, 1244–1254 (1992).
[CrossRef] [PubMed]

Grumet, A.

J. L. Wyatt, J. F. Rizzo, A. Grumet, D. Edell, R. J. Jensen, “Development of a silicon retinal implant: epiretinal stimulation of retinal ganglion cells in the rabbit,” Invest. Ophthalmol. Visual Sci. 35, 1380–1381 (1994).

Hamm, C. W.

Hickingbotham, D.

M. Humayan, R. Propst, E. de Juan, K. McCormick, D. Hickingbotham, “Bipolar surface electrical stimulation of the vertebrate retina,” Arch. Ophthalmol. 112, 110–111 (1994).
[CrossRef]

Hood, D. C.

J. Gordon, D. C. Hood, “Anatomy and physiology of the frog retina,” in The Amphibian Visual System: A Multidisciplinary Approach, K. V. Fite, ed. (Academic, New York, 1976), Chap. 2.

Horch, K.

K. Cha, K. Horch, R. A. Normann, “Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system,” Ann. Biomed. Eng. 20, 439–449 (1992).
[CrossRef] [PubMed]

Humayan, M.

M. Humayan, R. Propst, E. de Juan, K. McCormick, D. Hickingbotham, “Bipolar surface electrical stimulation of the vertebrate retina,” Arch. Ophthalmol. 112, 110–111 (1994).
[CrossRef]

Humayan, M. S.

M. S. Humayan, E. de Juan, G. Dagnelie, R. J. Greenberg, R. H. Propst, D. H. Phillips, “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol. 114, 40–46 (1996).
[CrossRef]

Jensen, R. J.

J. L. Wyatt, J. F. Rizzo, A. Grumet, D. Edell, R. J. Jensen, “Development of a silicon retinal implant: epiretinal stimulation of retinal ganglion cells in the rabbit,” Invest. Ophthalmol. Visual Sci. 35, 1380–1381 (1994).

Lankheet, M. J. M.

M. J. M. Lankheet, J. Molenaar, W. A. van de Grind, “The spike generating mechanism of cat retinal ganglion cells,” Vis. Res. 29, 505–517 (1989).
[CrossRef] [PubMed]

McCormick, K.

M. Humayan, R. Propst, E. de Juan, K. McCormick, D. Hickingbotham, “Bipolar surface electrical stimulation of the vertebrate retina,” Arch. Ophthalmol. 112, 110–111 (1994).
[CrossRef]

Meister, M.

M. Meister, J. Pine, D. A. Baylor, “Multi-neuronal signals from the retina: acquisition and analysis,” J. Neurosci. Methods 51, 95–106 (1994).
[CrossRef] [PubMed]

Molenaar, J.

M. J. M. Lankheet, J. Molenaar, W. A. van de Grind, “The spike generating mechanism of cat retinal ganglion cells,” Vis. Res. 29, 505–517 (1989).
[CrossRef] [PubMed]

Mortimer, J. T.

W. M. Grill, J. T. Mortimer, “Stimulus waveforms for selective neural stimulation,” IEEE Eng. Med. Biol. Mag. 14, 375–385 (1995).
[CrossRef]

Normann, R. A.

K. Cha, K. Horch, R. A. Normann, “Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system,” Ann. Biomed. Eng. 20, 439–449 (1992).
[CrossRef] [PubMed]

Peachey, N. S.

N. S. Peachey, “Use of microphotodiode implants to restore retinal function: a pilot study,” J. Rehabil. Res. Dev. 30–31, 307–308 (1994).

Phillips, D. H.

M. S. Humayan, E. de Juan, G. Dagnelie, R. J. Greenberg, R. H. Propst, D. H. Phillips, “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol. 114, 40–46 (1996).
[CrossRef]

Pine, J.

M. Meister, J. Pine, D. A. Baylor, “Multi-neuronal signals from the retina: acquisition and analysis,” J. Neurosci. Methods 51, 95–106 (1994).
[CrossRef] [PubMed]

Propst, R.

M. Humayan, R. Propst, E. de Juan, K. McCormick, D. Hickingbotham, “Bipolar surface electrical stimulation of the vertebrate retina,” Arch. Ophthalmol. 112, 110–111 (1994).
[CrossRef]

Propst, R. H.

M. S. Humayan, E. de Juan, G. Dagnelie, R. J. Greenberg, R. H. Propst, D. H. Phillips, “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol. 114, 40–46 (1996).
[CrossRef]

Rizzo, J. F.

J. L. Wyatt, J. F. Rizzo, A. Grumet, D. Edell, R. J. Jensen, “Development of a silicon retinal implant: epiretinal stimulation of retinal ganglion cells in the rabbit,” Invest. Ophthalmol. Visual Sci. 35, 1380–1381 (1994).

van de Grind, W. A.

M. J. M. Lankheet, J. Molenaar, W. A. van de Grind, “The spike generating mechanism of cat retinal ganglion cells,” Vis. Res. 29, 505–517 (1989).
[CrossRef] [PubMed]

Warman, E. N.

E. N. Warman, W. M. Grill, D. Durand, “Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds,” IEEE Trans. Biomed. Eng. 39, 1244–1254 (1992).
[CrossRef] [PubMed]

Wyatt, J. L.

J. L. Wyatt, J. F. Rizzo, A. Grumet, D. Edell, R. J. Jensen, “Development of a silicon retinal implant: epiretinal stimulation of retinal ganglion cells in the rabbit,” Invest. Ophthalmol. Visual Sci. 35, 1380–1381 (1994).

Ann. Biomed. Eng. (1)

K. Cha, K. Horch, R. A. Normann, “Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system,” Ann. Biomed. Eng. 20, 439–449 (1992).
[CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (2)

M. S. Humayan, E. de Juan, G. Dagnelie, R. J. Greenberg, R. H. Propst, D. H. Phillips, “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol. 114, 40–46 (1996).
[CrossRef]

M. Humayan, R. Propst, E. de Juan, K. McCormick, D. Hickingbotham, “Bipolar surface electrical stimulation of the vertebrate retina,” Arch. Ophthalmol. 112, 110–111 (1994).
[CrossRef]

IEEE Eng. Med. Biol. Mag. (1)

W. M. Grill, J. T. Mortimer, “Stimulus waveforms for selective neural stimulation,” IEEE Eng. Med. Biol. Mag. 14, 375–385 (1995).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

E. N. Warman, W. M. Grill, D. Durand, “Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds,” IEEE Trans. Biomed. Eng. 39, 1244–1254 (1992).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

J. L. Wyatt, J. F. Rizzo, A. Grumet, D. Edell, R. J. Jensen, “Development of a silicon retinal implant: epiretinal stimulation of retinal ganglion cells in the rabbit,” Invest. Ophthalmol. Visual Sci. 35, 1380–1381 (1994).

J. Neurosci. Methods (1)

M. Meister, J. Pine, D. A. Baylor, “Multi-neuronal signals from the retina: acquisition and analysis,” J. Neurosci. Methods 51, 95–106 (1994).
[CrossRef] [PubMed]

J. Rehabil. Res. Dev. (1)

N. S. Peachey, “Use of microphotodiode implants to restore retinal function: a pilot study,” J. Rehabil. Res. Dev. 30–31, 307–308 (1994).

Special Report, IEEE Spectrum (1)

R. Braham, “Toward an artificial eye,” Special Report, IEEE Spectrum 33, 20–69 (1996).

Vis. Res. (1)

M. J. M. Lankheet, J. Molenaar, W. A. van de Grind, “The spike generating mechanism of cat retinal ganglion cells,” Vis. Res. 29, 505–517 (1989).
[CrossRef] [PubMed]

Other (2)

E. Udd, ed., Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).

J. Gordon, D. C. Hood, “Anatomy and physiology of the frog retina,” in The Amphibian Visual System: A Multidisciplinary Approach, K. V. Fite, ed. (Academic, New York, 1976), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental configuration for the fiber-optic sensor.

Fig. 2
Fig. 2

Sensor response versus distance for a mirrored surface and three different fiber separations.

Fig. 3
Fig. 3

Theoretical sensor response for the same fiber separations used in the experiments. For modeling purposes, the cladding thickness was set to 2c l = fiber separation -2x o . The fiber parameters were such that 40 propagating modes were supported and emitted by the input fiber.

Fig. 4
Fig. 4

Sensor response versus distance for two different fiber separations.

Fig. 5
Fig. 5

Sensor response calculated theoretically when equal distribution of intensity over the same range of angles used in the mirrored-surface calculations is assumed.

Fig. 6
Fig. 6

In vitro sensor response versus distance for a 250-μm separation.

Fig. 7
Fig. 7

In vitro sensor response versus distance for a 125-μm separation.

Fig. 8
Fig. 8

Sensor response versus distance for in vivo evaluation for a 125-μm separation.

Fig. 9
Fig. 9

Block diagram of current probe positioning system incorporating the fiber-optic sensor used in the laboratory: ADC, analog-to-digital converter; Synch, feedback signals for synchronizing the data conversion and processing; uPROC, microprocessor; and F/R = forward/reverse toggle control.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A = x o / 2 Ψ k 2 + sin - 1 k   sin   Ψ - kl   sin   Ψ k 1 + l 2 1 / 2 ,
A = x o / 2 Ψ k 2 + π - sin - 1 k   sin   Ψ - kl   sin   Ψ k 1 + l 2 1 / 2 ,
I k = LI o 5 - k / 4 k + 4     k 3 ,
I k = LI o 1 / 4 k - 4     k 3 ,

Metrics