Abstract

A promising type of optical pressure sensor combines an integrated optical interferometer with a micromachined diaphragm on a shared silicon substrate. We have demonstrated a sensor of this type that uses an unbalanced Mach–Zehnder waveguide interferometer together with a broadband source to produce a spectrally encoded measurement. This spectral encoding mechanism is advantageous as it is not readily degraded by transmission through optical fibers. We have also demonstrated a means to obtain a temperature-compensated pressure measurement by interrogating both polarization eigenmodes of the interferometer.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Beheim, K. Fritsch, R. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
    [CrossRef]
  2. R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–980 (1991).
    [CrossRef] [PubMed]
  3. G. Beheim, D. J. Anthan, “Fiber-optic photoelastic pressure sensor with fiber-loss compensation,” Opt. Lett. 12, 220–222 (1987).
    [CrossRef] [PubMed]
  4. D. Angelidis, P. Parsons, “Optical micromachined pressure sensor for aerospace applications,” Opt. Eng. 31, 1638–1641 (1992).
    [CrossRef]
  5. H. Unzeitig, H. Bartelt, “All-optical pressure sensor with temperature compensation on resonant PECVD silicon nitride microstructures,” Electron. Lett. 28, 400–402 (1992).
    [CrossRef]
  6. M. Ohkawa, M. Izutsu, T. Sueta, “Integrated optic pressure sensor on silicon substrate,” Appl. Opt. 28, 5153–5157 (1989).
    [CrossRef] [PubMed]
  7. G. N. De Brabander, J. T. Boyd, G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6, 671–673 (1994).
    [CrossRef]
  8. A. Vadekar, A. Nathan, W. P. Huang, “Analysis and design of an integrated silicon ARROW Mach–Zehnder micromechanical interferometer,” J. Lightwave Technol. 12, 157–162 (1994).
    [CrossRef]
  9. K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12, 163–169 (1994).
    [CrossRef]
  10. J. Geist, A. R. Schaefer, J. F. Song, Y. H. Wang, E. F. Zalewski, “An accurate value for the absorption coefficient of silicon at 633 nm,” J. Res. Natl. Inst. Stand. Technol. 95, 549–558 (1990).
    [CrossRef]
  11. W. Gleine, J. Müller, “Low-pressure chemical vapor deposition silicon–oxynitride films for integrated optics,” Appl. Opt. 31, 2036–2040 (1992).
    [CrossRef] [PubMed]
  12. Y. Lin, P. Hesketh, J. Schuster, “Finite-element analysis of thermal stresses in a silicon pressure sensor for various die-mount materials,” Sensors Actuators A 44, 145–149 (1994).
    [CrossRef]

1994 (4)

G. N. De Brabander, J. T. Boyd, G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6, 671–673 (1994).
[CrossRef]

A. Vadekar, A. Nathan, W. P. Huang, “Analysis and design of an integrated silicon ARROW Mach–Zehnder micromechanical interferometer,” J. Lightwave Technol. 12, 157–162 (1994).
[CrossRef]

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12, 163–169 (1994).
[CrossRef]

Y. Lin, P. Hesketh, J. Schuster, “Finite-element analysis of thermal stresses in a silicon pressure sensor for various die-mount materials,” Sensors Actuators A 44, 145–149 (1994).
[CrossRef]

1992 (3)

W. Gleine, J. Müller, “Low-pressure chemical vapor deposition silicon–oxynitride films for integrated optics,” Appl. Opt. 31, 2036–2040 (1992).
[CrossRef] [PubMed]

D. Angelidis, P. Parsons, “Optical micromachined pressure sensor for aerospace applications,” Opt. Eng. 31, 1638–1641 (1992).
[CrossRef]

H. Unzeitig, H. Bartelt, “All-optical pressure sensor with temperature compensation on resonant PECVD silicon nitride microstructures,” Electron. Lett. 28, 400–402 (1992).
[CrossRef]

1991 (1)

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–980 (1991).
[CrossRef] [PubMed]

1990 (1)

J. Geist, A. R. Schaefer, J. F. Song, Y. H. Wang, E. F. Zalewski, “An accurate value for the absorption coefficient of silicon at 633 nm,” J. Res. Natl. Inst. Stand. Technol. 95, 549–558 (1990).
[CrossRef]

1989 (1)

1987 (2)

G. Beheim, D. J. Anthan, “Fiber-optic photoelastic pressure sensor with fiber-loss compensation,” Opt. Lett. 12, 220–222 (1987).
[CrossRef] [PubMed]

G. Beheim, K. Fritsch, R. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
[CrossRef]

Afromowitz, M. A.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–980 (1991).
[CrossRef] [PubMed]

Angelidis, D.

D. Angelidis, P. Parsons, “Optical micromachined pressure sensor for aerospace applications,” Opt. Eng. 31, 1638–1641 (1992).
[CrossRef]

Anthan, D. J.

Bartelt, H.

H. Unzeitig, H. Bartelt, “All-optical pressure sensor with temperature compensation on resonant PECVD silicon nitride microstructures,” Electron. Lett. 28, 400–402 (1992).
[CrossRef]

Beheim, G.

G. N. De Brabander, J. T. Boyd, G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6, 671–673 (1994).
[CrossRef]

G. Beheim, D. J. Anthan, “Fiber-optic photoelastic pressure sensor with fiber-loss compensation,” Opt. Lett. 12, 220–222 (1987).
[CrossRef] [PubMed]

G. Beheim, K. Fritsch, R. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
[CrossRef]

Boyd, J. T.

G. N. De Brabander, J. T. Boyd, G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6, 671–673 (1994).
[CrossRef]

De Brabander, G. N.

G. N. De Brabander, J. T. Boyd, G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6, 671–673 (1994).
[CrossRef]

Fischer, K.

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12, 163–169 (1994).
[CrossRef]

Fritsch, K.

G. Beheim, K. Fritsch, R. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
[CrossRef]

Geist, J.

J. Geist, A. R. Schaefer, J. F. Song, Y. H. Wang, E. F. Zalewski, “An accurate value for the absorption coefficient of silicon at 633 nm,” J. Res. Natl. Inst. Stand. Technol. 95, 549–558 (1990).
[CrossRef]

Gleine, W.

Hartl, J. C.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–980 (1991).
[CrossRef] [PubMed]

Hesketh, P.

Y. Lin, P. Hesketh, J. Schuster, “Finite-element analysis of thermal stresses in a silicon pressure sensor for various die-mount materials,” Sensors Actuators A 44, 145–149 (1994).
[CrossRef]

Hoffmann, R.

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12, 163–169 (1994).
[CrossRef]

Huang, W. P.

A. Vadekar, A. Nathan, W. P. Huang, “Analysis and design of an integrated silicon ARROW Mach–Zehnder micromechanical interferometer,” J. Lightwave Technol. 12, 157–162 (1994).
[CrossRef]

Izutsu, M.

Lin, Y.

Y. Lin, P. Hesketh, J. Schuster, “Finite-element analysis of thermal stresses in a silicon pressure sensor for various die-mount materials,” Sensors Actuators A 44, 145–149 (1994).
[CrossRef]

Mitchell, G. L.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–980 (1991).
[CrossRef] [PubMed]

Müller, J.

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12, 163–169 (1994).
[CrossRef]

W. Gleine, J. Müller, “Low-pressure chemical vapor deposition silicon–oxynitride films for integrated optics,” Appl. Opt. 31, 2036–2040 (1992).
[CrossRef] [PubMed]

Nathan, A.

A. Vadekar, A. Nathan, W. P. Huang, “Analysis and design of an integrated silicon ARROW Mach–Zehnder micromechanical interferometer,” J. Lightwave Technol. 12, 157–162 (1994).
[CrossRef]

Ohkawa, M.

Parsons, P.

D. Angelidis, P. Parsons, “Optical micromachined pressure sensor for aerospace applications,” Opt. Eng. 31, 1638–1641 (1992).
[CrossRef]

Poorman, R.

G. Beheim, K. Fritsch, R. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
[CrossRef]

Saaski, E.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–980 (1991).
[CrossRef] [PubMed]

Salle, D.

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12, 163–169 (1994).
[CrossRef]

Schaefer, A. R.

J. Geist, A. R. Schaefer, J. F. Song, Y. H. Wang, E. F. Zalewski, “An accurate value for the absorption coefficient of silicon at 633 nm,” J. Res. Natl. Inst. Stand. Technol. 95, 549–558 (1990).
[CrossRef]

Schuster, J.

Y. Lin, P. Hesketh, J. Schuster, “Finite-element analysis of thermal stresses in a silicon pressure sensor for various die-mount materials,” Sensors Actuators A 44, 145–149 (1994).
[CrossRef]

Song, J. F.

J. Geist, A. R. Schaefer, J. F. Song, Y. H. Wang, E. F. Zalewski, “An accurate value for the absorption coefficient of silicon at 633 nm,” J. Res. Natl. Inst. Stand. Technol. 95, 549–558 (1990).
[CrossRef]

Sueta, T.

Unzeitig, H.

H. Unzeitig, H. Bartelt, “All-optical pressure sensor with temperature compensation on resonant PECVD silicon nitride microstructures,” Electron. Lett. 28, 400–402 (1992).
[CrossRef]

Vadekar, A.

A. Vadekar, A. Nathan, W. P. Huang, “Analysis and design of an integrated silicon ARROW Mach–Zehnder micromechanical interferometer,” J. Lightwave Technol. 12, 157–162 (1994).
[CrossRef]

Wang, Y. H.

J. Geist, A. R. Schaefer, J. F. Song, Y. H. Wang, E. F. Zalewski, “An accurate value for the absorption coefficient of silicon at 633 nm,” J. Res. Natl. Inst. Stand. Technol. 95, 549–558 (1990).
[CrossRef]

Wasse, F.

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12, 163–169 (1994).
[CrossRef]

Wolthuis, R. A.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–980 (1991).
[CrossRef] [PubMed]

Zalewski, E. F.

J. Geist, A. R. Schaefer, J. F. Song, Y. H. Wang, E. F. Zalewski, “An accurate value for the absorption coefficient of silicon at 633 nm,” J. Res. Natl. Inst. Stand. Technol. 95, 549–558 (1990).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

H. Unzeitig, H. Bartelt, “All-optical pressure sensor with temperature compensation on resonant PECVD silicon nitride microstructures,” Electron. Lett. 28, 400–402 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. N. De Brabander, J. T. Boyd, G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6, 671–673 (1994).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–980 (1991).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

A. Vadekar, A. Nathan, W. P. Huang, “Analysis and design of an integrated silicon ARROW Mach–Zehnder micromechanical interferometer,” J. Lightwave Technol. 12, 157–162 (1994).
[CrossRef]

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12, 163–169 (1994).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

J. Geist, A. R. Schaefer, J. F. Song, Y. H. Wang, E. F. Zalewski, “An accurate value for the absorption coefficient of silicon at 633 nm,” J. Res. Natl. Inst. Stand. Technol. 95, 549–558 (1990).
[CrossRef]

Opt. Eng. (1)

D. Angelidis, P. Parsons, “Optical micromachined pressure sensor for aerospace applications,” Opt. Eng. 31, 1638–1641 (1992).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

G. Beheim, K. Fritsch, R. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
[CrossRef]

Sensors Actuators A (1)

Y. Lin, P. Hesketh, J. Schuster, “Finite-element analysis of thermal stresses in a silicon pressure sensor for various die-mount materials,” Sensors Actuators A 44, 145–149 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Plan view of the Mach–Zehnder interferometer showing diaphragm detail in cross section.

Fig. 2
Fig. 2

Spectral power density transmitted by the TM mode of the fabricated Mach–Zehnder interferometer (the TE mode spectrum was similar).

Fig. 3
Fig. 3

Experimental configuration to simultaneously measure TE and TM phase shifts as functions of pressure and temperature.

Fig. 4
Fig. 4

Mach–Zehnder interferometer transmitted spectral power density normalized to that from a straight channel waveguide as a function of pixel position (equivalent to wavelength) for the indicated pressures.

Fig. 5
Fig. 5

Measured TE and TM phase shifts as functions of pressure at room temperature.

Tables (1)

Tables Icon

Table 1 Phase and Temperature Sensitivities

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ = n e l reference - sensing   arm   n e l d l .
i f λ = i SLD λ T λ 1 2 1 + cos 2 π Λ λ ,
Δ P = 271   kPa / rad Δ ϕ TE - 153   kPa / rad Δ ϕ TM ,
Δ T = 88   ° C / rad Δ ϕ TE - 8.5   ° C / rad Δ ϕ TM .

Metrics