Abstract

When butt coupling a Fabry–Perot laser diode to an extremely closely spaced waveguide (separation less than or equal to a few times the Rayleigh range of the laser beam), there is a trade-off between the optimal power coupling and the variation of the coupled laser diode’s operational characteristics. Changes in the butt-coupling configuration parameters influence the coupling efficiency, as well as the strength of the feedback into the laser diode. Using a previously reported phenomenological model that treats the butt-coupled laser diode as an extremely short external-cavity (ESEC) device, we quantitatively describe how the butt-coupling parameters can be used to control the output power, threshold current, wavelength, and relative intensity noise of the ESEC laser diode. Our analyses are supported by experimental results. The importance of choosing the correct coordinate plane for evaluation of the overlap integrals that are used in the model is also discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Voumard, R. Salathe, H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. 12, 369–378 (1977).
    [CrossRef]
  2. L. A. Coldren, T. L. Koch, “External cavity laser design,” J. Lightwave Technol. 2, 1045–1051 (1984).
    [CrossRef]
  3. C. Lin, C. A. Burrus, L. A. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,” J. Lightwave Technol. 2, 544–549 (1984).
    [CrossRef]
  4. G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a compact three-cavity laser configuration,” J. Lightwave Technol. 5, 608–615 (1987).
    [CrossRef]
  5. K.-Y. Liou, C. A. Burrus, F. Bosch, “Graded-index-rod external coupled-cavity laser with backface output-monitor-stabilized single-frequency operation,” J. Lightwave Technol. 3, 985–987 (1985).
    [CrossRef]
  6. J. R. Andrews, “Enhanced thermal stability of single longitudinal mode coupled cavity lasers,” Appl. Phys. Lett. 47, 71–73 (1985).
    [CrossRef]
  7. L. J. Bonnell, D. T. Cassidy, “Alignment tolerances of short-external-cavity InGaAsP diode lasers for use as tunable single-mode sources,” Appl. Opt. 28, 4622–4628 (1989).
    [CrossRef] [PubMed]
  8. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short-external-cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
    [CrossRef] [PubMed]
  9. X. Zhu, D. T. Cassidy, “Liquid mixture detection by InGaAsP semiconductor lasers,” in Laser Diode and LED Applications III, K. J. Linden, ed., Proc. SPIE3000, 138–148 (1997).
    [CrossRef]
  10. B. F. Ventrudo, D. T. Cassidy, “Operating characteristics of a tunable diode laser absorption spectrometer using short-external-cavity and DFB laser diodes,” Appl. Opt. 29, 5007–5013 (1990).
    [CrossRef] [PubMed]
  11. D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
    [CrossRef]
  12. P. A. Ruprecht, J. R. Brandenberger, “Enhancing diode laser tuning with a short external cavity,” Opt. Commun. 93, 82–86 (1992).
    [CrossRef]
  13. Y. Uenishi, K. Honma, S. Nagaoka, “Tunable laser diode using a nickel micromachined external mirror,” Electron. Lett. 32, 1207–1208 (1996).
    [CrossRef]
  14. H. Ukita, Y. Uenishi, Y. Katagiri, “Applications of an extremely short strong-feedback configuration of an external-cavity laser diode system fabricated with GaAs-based integration technology,” Appl. Opt. 33, 5557–5563 (1994).
    [CrossRef] [PubMed]
  15. Y. Uenishi, M. Tsugai, M. Mehregany, “Hybrid-integrated laser-diode micro-external mirror fabricated by (110) silicon micromachining,” Electron. Lett. 31, 965–966 (1995).
    [CrossRef]
  16. A. Dandridge, R. O. Miles, “Spectral characteristics of semiconductor laser diodes coupled to optical fibers,” Electron. Lett. 17, 273–285 (1981).
    [CrossRef]
  17. I. Ikushima, M. Maeda, “Lasing spectra of semiconductor lasers coupled to an optical fiber,” IEEE J. Quantum Electron. QE-15, 844–845 (1979).
    [CrossRef]
  18. P. Karioja, D. Howe, “Diode-laser-to-waveguide butt-coupling,” Appl. Opt. 35, 404–416 (1996).
    [CrossRef] [PubMed]
  19. Y. Sidorin, D. Howe, “Diode-laser-to-waveguide butt coupling: extremely short external cavity,” Appl. Opt. 36, 4273–4277 (1997).
    [CrossRef] [PubMed]
  20. Y. Sidorin, D. Howe, “Wavelength tuning based on butt-coupling into an optical fiber,” Opt. Lett. 22, 802–804 (1997).
    [CrossRef] [PubMed]
  21. H. Kressel, “Semiconductor laser devices,” in Laser Handbook, F. T. Arecchi, E. O. Schultz-Dubois, eds. (North-Holland, Amsterdam, 1988), Vol. 1.
  22. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, Orlando, Fla., 1991).
  23. H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990), Chap. 6.
  24. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1979).
  25. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  26. N. A. Olsson, N. K. Dutta, “Effects of external optical feedback on the spectral properties of cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 44, 840–842 (1984).
    [CrossRef]
  27. H. Temkin, N. A. Olsson, J. H. Abeles, R. H. Logan, M. B. Panish, “Reflection noise in index-guided InGaAs lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
    [CrossRef]
  28. J. Sigg, “Effects of optical feedback on the light-current characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 29, 1262–1270 (1993).
    [CrossRef]
  29. SDL, Inc., 80 Rose Orchard Way, San Jose, Calif. 95134.

1997

1996

Y. Uenishi, K. Honma, S. Nagaoka, “Tunable laser diode using a nickel micromachined external mirror,” Electron. Lett. 32, 1207–1208 (1996).
[CrossRef]

P. Karioja, D. Howe, “Diode-laser-to-waveguide butt-coupling,” Appl. Opt. 35, 404–416 (1996).
[CrossRef] [PubMed]

1995

Y. Uenishi, M. Tsugai, M. Mehregany, “Hybrid-integrated laser-diode micro-external mirror fabricated by (110) silicon micromachining,” Electron. Lett. 31, 965–966 (1995).
[CrossRef]

1994

1993

J. Sigg, “Effects of optical feedback on the light-current characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 29, 1262–1270 (1993).
[CrossRef]

1992

P. A. Ruprecht, J. R. Brandenberger, “Enhancing diode laser tuning with a short external cavity,” Opt. Commun. 93, 82–86 (1992).
[CrossRef]

1991

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

1990

1989

1987

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a compact three-cavity laser configuration,” J. Lightwave Technol. 5, 608–615 (1987).
[CrossRef]

1986

H. Temkin, N. A. Olsson, J. H. Abeles, R. H. Logan, M. B. Panish, “Reflection noise in index-guided InGaAs lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

1985

K.-Y. Liou, C. A. Burrus, F. Bosch, “Graded-index-rod external coupled-cavity laser with backface output-monitor-stabilized single-frequency operation,” J. Lightwave Technol. 3, 985–987 (1985).
[CrossRef]

J. R. Andrews, “Enhanced thermal stability of single longitudinal mode coupled cavity lasers,” Appl. Phys. Lett. 47, 71–73 (1985).
[CrossRef]

1984

L. A. Coldren, T. L. Koch, “External cavity laser design,” J. Lightwave Technol. 2, 1045–1051 (1984).
[CrossRef]

C. Lin, C. A. Burrus, L. A. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,” J. Lightwave Technol. 2, 544–549 (1984).
[CrossRef]

N. A. Olsson, N. K. Dutta, “Effects of external optical feedback on the spectral properties of cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 44, 840–842 (1984).
[CrossRef]

1981

A. Dandridge, R. O. Miles, “Spectral characteristics of semiconductor laser diodes coupled to optical fibers,” Electron. Lett. 17, 273–285 (1981).
[CrossRef]

1979

I. Ikushima, M. Maeda, “Lasing spectra of semiconductor lasers coupled to an optical fiber,” IEEE J. Quantum Electron. QE-15, 844–845 (1979).
[CrossRef]

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1979).

1977

C. Voumard, R. Salathe, H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. 12, 369–378 (1977).
[CrossRef]

Abeles, J. H.

H. Temkin, N. A. Olsson, J. H. Abeles, R. H. Logan, M. B. Panish, “Reflection noise in index-guided InGaAs lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

Andrews, J. R.

J. R. Andrews, “Enhanced thermal stability of single longitudinal mode coupled cavity lasers,” Appl. Phys. Lett. 47, 71–73 (1985).
[CrossRef]

Bonnell, L. J.

Bosch, F.

K.-Y. Liou, C. A. Burrus, F. Bosch, “Graded-index-rod external coupled-cavity laser with backface output-monitor-stabilized single-frequency operation,” J. Lightwave Technol. 3, 985–987 (1985).
[CrossRef]

Brandenberger, J. R.

P. A. Ruprecht, J. R. Brandenberger, “Enhancing diode laser tuning with a short external cavity,” Opt. Commun. 93, 82–86 (1992).
[CrossRef]

Bruce, D. M.

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short-external-cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
[CrossRef] [PubMed]

Burrus, C. A.

K.-Y. Liou, C. A. Burrus, F. Bosch, “Graded-index-rod external coupled-cavity laser with backface output-monitor-stabilized single-frequency operation,” J. Lightwave Technol. 3, 985–987 (1985).
[CrossRef]

C. Lin, C. A. Burrus, L. A. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,” J. Lightwave Technol. 2, 544–549 (1984).
[CrossRef]

Cassidy, D. T.

Coldren, L. A.

C. Lin, C. A. Burrus, L. A. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,” J. Lightwave Technol. 2, 544–549 (1984).
[CrossRef]

L. A. Coldren, T. L. Koch, “External cavity laser design,” J. Lightwave Technol. 2, 1045–1051 (1984).
[CrossRef]

Dandridge, A.

A. Dandridge, R. O. Miles, “Spectral characteristics of semiconductor laser diodes coupled to optical fibers,” Electron. Lett. 17, 273–285 (1981).
[CrossRef]

Dutta, N. K.

N. A. Olsson, N. K. Dutta, “Effects of external optical feedback on the spectral properties of cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 44, 840–842 (1984).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

Gross, R.

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a compact three-cavity laser configuration,” J. Lightwave Technol. 5, 608–615 (1987).
[CrossRef]

Haug, H.

H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990), Chap. 6.

Honma, K.

Y. Uenishi, K. Honma, S. Nagaoka, “Tunable laser diode using a nickel micromachined external mirror,” Electron. Lett. 32, 1207–1208 (1996).
[CrossRef]

Howe, D.

Ikushima, I.

I. Ikushima, M. Maeda, “Lasing spectra of semiconductor lasers coupled to an optical fiber,” IEEE J. Quantum Electron. QE-15, 844–845 (1979).
[CrossRef]

Karioja, P.

Katagiri, Y.

Koch, S. W.

H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990), Chap. 6.

Koch, T. L.

L. A. Coldren, T. L. Koch, “External cavity laser design,” J. Lightwave Technol. 2, 1045–1051 (1984).
[CrossRef]

Kressel, H.

H. Kressel, “Semiconductor laser devices,” in Laser Handbook, F. T. Arecchi, E. O. Schultz-Dubois, eds. (North-Holland, Amsterdam, 1988), Vol. 1.

Lin, C.

C. Lin, C. A. Burrus, L. A. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,” J. Lightwave Technol. 2, 544–549 (1984).
[CrossRef]

Liou, K.-Y.

K.-Y. Liou, C. A. Burrus, F. Bosch, “Graded-index-rod external coupled-cavity laser with backface output-monitor-stabilized single-frequency operation,” J. Lightwave Technol. 3, 985–987 (1985).
[CrossRef]

Logan, R. H.

H. Temkin, N. A. Olsson, J. H. Abeles, R. H. Logan, M. B. Panish, “Reflection noise in index-guided InGaAs lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

Maeda, M.

I. Ikushima, M. Maeda, “Lasing spectra of semiconductor lasers coupled to an optical fiber,” IEEE J. Quantum Electron. QE-15, 844–845 (1979).
[CrossRef]

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1979).

Mehregany, M.

Y. Uenishi, M. Tsugai, M. Mehregany, “Hybrid-integrated laser-diode micro-external mirror fabricated by (110) silicon micromachining,” Electron. Lett. 31, 965–966 (1995).
[CrossRef]

Meissner, P.

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a compact three-cavity laser configuration,” J. Lightwave Technol. 5, 608–615 (1987).
[CrossRef]

Miles, R. O.

A. Dandridge, R. O. Miles, “Spectral characteristics of semiconductor laser diodes coupled to optical fibers,” Electron. Lett. 17, 273–285 (1981).
[CrossRef]

Nagaoka, S.

Y. Uenishi, K. Honma, S. Nagaoka, “Tunable laser diode using a nickel micromachined external mirror,” Electron. Lett. 32, 1207–1208 (1996).
[CrossRef]

Olsson, N. A.

H. Temkin, N. A. Olsson, J. H. Abeles, R. H. Logan, M. B. Panish, “Reflection noise in index-guided InGaAs lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

N. A. Olsson, N. K. Dutta, “Effects of external optical feedback on the spectral properties of cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 44, 840–842 (1984).
[CrossRef]

Panish, M. B.

H. Temkin, N. A. Olsson, J. H. Abeles, R. H. Logan, M. B. Panish, “Reflection noise in index-guided InGaAs lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

Patzak, E.

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a compact three-cavity laser configuration,” J. Lightwave Technol. 5, 608–615 (1987).
[CrossRef]

Ruprecht, P. A.

P. A. Ruprecht, J. R. Brandenberger, “Enhancing diode laser tuning with a short external cavity,” Opt. Commun. 93, 82–86 (1992).
[CrossRef]

Salathe, R.

C. Voumard, R. Salathe, H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. 12, 369–378 (1977).
[CrossRef]

Sidorin, Y.

Sigg, J.

J. Sigg, “Effects of optical feedback on the light-current characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 29, 1262–1270 (1993).
[CrossRef]

Temkin, H.

H. Temkin, N. A. Olsson, J. H. Abeles, R. H. Logan, M. B. Panish, “Reflection noise in index-guided InGaAs lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

Tsugai, M.

Y. Uenishi, M. Tsugai, M. Mehregany, “Hybrid-integrated laser-diode micro-external mirror fabricated by (110) silicon micromachining,” Electron. Lett. 31, 965–966 (1995).
[CrossRef]

Uenishi, Y.

Y. Uenishi, K. Honma, S. Nagaoka, “Tunable laser diode using a nickel micromachined external mirror,” Electron. Lett. 32, 1207–1208 (1996).
[CrossRef]

Y. Uenishi, M. Tsugai, M. Mehregany, “Hybrid-integrated laser-diode micro-external mirror fabricated by (110) silicon micromachining,” Electron. Lett. 31, 965–966 (1995).
[CrossRef]

H. Ukita, Y. Uenishi, Y. Katagiri, “Applications of an extremely short strong-feedback configuration of an external-cavity laser diode system fabricated with GaAs-based integration technology,” Appl. Opt. 33, 5557–5563 (1994).
[CrossRef] [PubMed]

Ukita, H.

Ventrudo, B. F.

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

B. F. Ventrudo, D. T. Cassidy, “Operating characteristics of a tunable diode laser absorption spectrometer using short-external-cavity and DFB laser diodes,” Appl. Opt. 29, 5007–5013 (1990).
[CrossRef] [PubMed]

Voumard, C.

C. Voumard, R. Salathe, H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. 12, 369–378 (1977).
[CrossRef]

Weber, H.

C. Voumard, R. Salathe, H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. 12, 369–378 (1977).
[CrossRef]

Wenke, G.

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a compact three-cavity laser configuration,” J. Lightwave Technol. 5, 608–615 (1987).
[CrossRef]

Zhu, X.

X. Zhu, D. T. Cassidy, “Liquid mixture detection by InGaAsP semiconductor lasers,” in Laser Diode and LED Applications III, K. J. Linden, ed., Proc. SPIE3000, 138–148 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys.

C. Voumard, R. Salathe, H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. 12, 369–378 (1977).
[CrossRef]

Appl. Phys. Lett.

J. R. Andrews, “Enhanced thermal stability of single longitudinal mode coupled cavity lasers,” Appl. Phys. Lett. 47, 71–73 (1985).
[CrossRef]

N. A. Olsson, N. K. Dutta, “Effects of external optical feedback on the spectral properties of cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 44, 840–842 (1984).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1979).

Electron. Lett.

Y. Uenishi, K. Honma, S. Nagaoka, “Tunable laser diode using a nickel micromachined external mirror,” Electron. Lett. 32, 1207–1208 (1996).
[CrossRef]

Y. Uenishi, M. Tsugai, M. Mehregany, “Hybrid-integrated laser-diode micro-external mirror fabricated by (110) silicon micromachining,” Electron. Lett. 31, 965–966 (1995).
[CrossRef]

A. Dandridge, R. O. Miles, “Spectral characteristics of semiconductor laser diodes coupled to optical fibers,” Electron. Lett. 17, 273–285 (1981).
[CrossRef]

IEEE J. Quantum Electron.

I. Ikushima, M. Maeda, “Lasing spectra of semiconductor lasers coupled to an optical fiber,” IEEE J. Quantum Electron. QE-15, 844–845 (1979).
[CrossRef]

H. Temkin, N. A. Olsson, J. H. Abeles, R. H. Logan, M. B. Panish, “Reflection noise in index-guided InGaAs lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

J. Sigg, “Effects of optical feedback on the light-current characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 29, 1262–1270 (1993).
[CrossRef]

J. Lightwave Technol.

L. A. Coldren, T. L. Koch, “External cavity laser design,” J. Lightwave Technol. 2, 1045–1051 (1984).
[CrossRef]

C. Lin, C. A. Burrus, L. A. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,” J. Lightwave Technol. 2, 544–549 (1984).
[CrossRef]

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a compact three-cavity laser configuration,” J. Lightwave Technol. 5, 608–615 (1987).
[CrossRef]

K.-Y. Liou, C. A. Burrus, F. Bosch, “Graded-index-rod external coupled-cavity laser with backface output-monitor-stabilized single-frequency operation,” J. Lightwave Technol. 3, 985–987 (1985).
[CrossRef]

Opt. Commun.

P. A. Ruprecht, J. R. Brandenberger, “Enhancing diode laser tuning with a short external cavity,” Opt. Commun. 93, 82–86 (1992).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

Other

X. Zhu, D. T. Cassidy, “Liquid mixture detection by InGaAsP semiconductor lasers,” in Laser Diode and LED Applications III, K. J. Linden, ed., Proc. SPIE3000, 138–148 (1997).
[CrossRef]

H. Kressel, “Semiconductor laser devices,” in Laser Handbook, F. T. Arecchi, E. O. Schultz-Dubois, eds. (North-Holland, Amsterdam, 1988), Vol. 1.

E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, Orlando, Fla., 1991).

H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990), Chap. 6.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

SDL, Inc., 80 Rose Orchard Way, San Jose, Calif. 95134.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the ESEC LD that is realized by butt coupling a high-power laser diode (HPLD) and a SMF. L, I, and F are planes used for overlap integral computation. Possible angular and transverse misalignments (θ, δ) between the HPLD and SMF are not shown. The ESEC LD is equivalent to a LD with compound output mirror of reflectance R eff. R 1, R 2, and R 3 are the reflectances of the solitary LD rear and output facets and the SMF input facet, respectively. P 1 and P 2 are the values of LD cavity output powers, and P 3 is the power coupled into the SMF (or, equivalently, the output power of the ESEC LD).

Fig. 2
Fig. 2

Experimental setup. RF, radio frequency; FP, Fabry–Perot.

Fig. 3
Fig. 3

Efficiency of butt coupling of a high-power LD into a SMF ηcpl = P 3/P 2, calculated for zero misalignments and R 3 = 0.5% in different planes. L, LD output facet; F, SMF input facet; I, intermediate plane. The difference in these efficiencies, relative to that for the F plane, is shown in the inset.

Fig. 4
Fig. 4

Antireflection coating of the SMF facet results in an increased axial separation tolerance for ESEC butt coupling. In the limit R 3 → 0 the contrast of the coupled power versus the separation z curve reduces to zero. Maximum coupled power, however, is not practically affected.

Fig. 5
Fig. 5

Threshold current of the ESEC LD (I thr,E ) is deeply modulated about the value of solitary LD threshold current (I thr,0) because of changes in the length of the ESEC. I thr,E decays to I thr,0 in the limit z → ∞. Comparison with the experiment is shown in the inset.

Fig. 6
Fig. 6

Wavelength tuning range decays with the increase of LD-to-SMF separation. The complete butt-coupling model (which includes the effect of the gain spectrum shift) is in good agreement with the experiment. Neglecting the gain spectrum dynamics (i.e., coarse etalon approach) results in incorrect estimates of the tuning range.

Fig. 7
Fig. 7

Relative intensity noise measured during wavelength tuning of an ESEC LD realized by butt coupling (shown at 1 MHz for a system having the parameters listed in Table 1): a) single-mode tuning; b) multimode tuning; c) min, mean, and max of noise distributions for s (single-mode tuning) and m (multimode tuning); and d) RIN for the solitary LD.

Fig. 8
Fig. 8

Contour map of wavelength tuning and coupling efficiency achievable with an ESEC LD realized by butt coupling a high-power LD to a SMF (parameters listed in Table 1).

Tables (1)

Tables Icon

Table 1 Parameters Used for ESEC Butt-Coupling Modeling and Experiments (unless stated otherwise)a

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

r eff λ ,   z = r 2 - 1 - r 2 2 r 2 p = 1 C LL , p - r 2 r 3 exp - ik 2 z p ,
P tot , E = I - I thr , E q   η d h ν ,
I thr , E = C thr α int d + ln R 1 R eff - 1 / 2 .
Γ g thr , E z ,   λ = α m - ln r 1 | r eff z ,   λ | / d ,
2 β d - ϕ eff = 2 π m ,
ρ P = P 2 P 1 = R eff R 1 1 / 2 1 - R 1 1 - R eff .
T eff = t eff t eff * = 1 - r 2 2 1 - r 3 2 1 / 2 × l = 1 C LF , l - r 2 r 3 exp - i 2 kz l - 1 × c . c .
C LL , p = γ p exp - i Δ p ,
R eff ± λ ,   z = R 2 ± R 3 1 - R 2 γ p λ ,   z 2 .
I thr , E I thr , 0 = 2 d α int - ln R 1 R eff 2 d α int - ln R 1 R 2 ,
R eff = exp I thr , E I thr , 0 - 1 ln   R 1 - 2 d α int + I thr , E I thr , 0 ln   R 2 .
δ λ = λ 2 2 n gr d ,
δ z = z   δ λ λ = λ 2 n gr d   z .
Δ λ z = λ 2 δ z - 1 δ λ = λ 2 2 z - δ λ .

Metrics