Abstract

A class of low-nonlinearity dispersion-shifted fibers based on depressed-core multistep index profiles is investigated. A systematic approach for designing these fibers in which a reference W-index profile is used to initiate the design is presented. Transmission properties, including effective area, mode-field diameter, dispersion, dispersion slope, and cutoff wavelength, are evaluated for several design examples. The effects of varying fiber dimensions and indices on effective area and mode-field diameter are assessed. It is shown that there is a trade-off between these two properties and, generally, larger effective areas are associated with larger mode-field diameters. Dispersion-shifted single-mode fiber designs with effective areas of from 78 to 210 μm2 and the corresponding mode-field diameter of from 8.94 to 14.94 μm, dispersion less than 0.07 ps/nm km, and dispersion slope of approximately 0.05 ps/nm2 km are presented.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
    [CrossRef]
  2. D. Marcuse, “Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion,” J. Lightwave Technol. 9, 356–361 (1991).
    [CrossRef]
  3. T. Li, “The impact of optical amplifiers on long-distance lightwave communications,” IEEE Proc. 81, 1568–1579 (1993).
    [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989).
  5. P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boniort, B. Perrin, J. J. Girard, J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–261.
  6. Y. Liu, A. J. Antos, M. A. Newhouse, “Large effective area dispersion-shifted fibers with dual-ring index profiles,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), pp. 165–166.
  7. S. Arai, Y. Akasaka, Y. Suzuki, T. Kamiya, “Low nonlinearity dispersion-shifted fiber,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997) p. 65.
  8. T. Kato, S. Ishikawa, E. Sasaoka, M. Nishimura, “Low nonlinearity dispersion-shifted fibers employing dual-shaped core profile with depressed cladding,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), p. 60.
  9. H. T. Hattori, A. Safaai-Jazi, “New dispersion-shifted fiber with significantly reduced nonlinear effects,” presented at the OSA Annual Meeting, Rochester, N.Y., 20–24 October 1996.
  10. A. Safaai-Jazi, L. J. Lu, “Evaluation of chromatic dispersion in W-type fibers,” Opt. Lett. 14, 760–762 (1989).
    [CrossRef] [PubMed]
  11. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  12. K. Petermann, “Constraints for fundamental-mode spot size for broadband dispersion-compensated single-mode fibers,” Electron. Lett. 19, 712–714 (1983).
    [CrossRef]
  13. Y. Namihira, “Relationship between nonlinear effective area and mode-field-diameter for dispersion shifted fibres,” Electron. Lett. 30, 262–264 (1994).
    [CrossRef]
  14. D. Marcuse, “Microdeformation losses of single-mode fibers,” Appl. Opt. 23, 1082–1091 (1984).
    [CrossRef] [PubMed]
  15. L. G. Cohen, W. L. Mammel, S. J. Jang, “Low loss quadruple clad single-mode lightguides with dispersion below 2ps/km.nm over the 1.28-1.65 μm wavelength range,” Electron. Lett. 18, 1023–1024 (1982).
    [CrossRef]
  16. V. A. Bhagarvatula, M. S. Spotz, W. F. Love, D. B. Keck, “Segmented-core single-mode fibers with low loss and low dispersion,” Electron. Lett. 19, 317–318 (1983).
    [CrossRef]
  17. M. J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, England, 1981).

1994 (1)

Y. Namihira, “Relationship between nonlinear effective area and mode-field-diameter for dispersion shifted fibres,” Electron. Lett. 30, 262–264 (1994).
[CrossRef]

1993 (1)

T. Li, “The impact of optical amplifiers on long-distance lightwave communications,” IEEE Proc. 81, 1568–1579 (1993).
[CrossRef]

1991 (2)

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

D. Marcuse, “Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion,” J. Lightwave Technol. 9, 356–361 (1991).
[CrossRef]

1989 (1)

1984 (1)

1983 (2)

V. A. Bhagarvatula, M. S. Spotz, W. F. Love, D. B. Keck, “Segmented-core single-mode fibers with low loss and low dispersion,” Electron. Lett. 19, 317–318 (1983).
[CrossRef]

K. Petermann, “Constraints for fundamental-mode spot size for broadband dispersion-compensated single-mode fibers,” Electron. Lett. 19, 712–714 (1983).
[CrossRef]

1982 (1)

L. G. Cohen, W. L. Mammel, S. J. Jang, “Low loss quadruple clad single-mode lightguides with dispersion below 2ps/km.nm over the 1.28-1.65 μm wavelength range,” Electron. Lett. 18, 1023–1024 (1982).
[CrossRef]

Adams, M. J.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, England, 1981).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989).

Akasaka, Y.

S. Arai, Y. Akasaka, Y. Suzuki, T. Kamiya, “Low nonlinearity dispersion-shifted fiber,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997) p. 65.

Antos, A. J.

Y. Liu, A. J. Antos, M. A. Newhouse, “Large effective area dispersion-shifted fibers with dual-ring index profiles,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), pp. 165–166.

Arai, S.

S. Arai, Y. Akasaka, Y. Suzuki, T. Kamiya, “Low nonlinearity dispersion-shifted fiber,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997) p. 65.

Auge, J.

P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boniort, B. Perrin, J. J. Girard, J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–261.

Barre, G.

P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boniort, B. Perrin, J. J. Girard, J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–261.

Bhagarvatula, V. A.

V. A. Bhagarvatula, M. S. Spotz, W. F. Love, D. B. Keck, “Segmented-core single-mode fibers with low loss and low dispersion,” Electron. Lett. 19, 317–318 (1983).
[CrossRef]

Boniort, J. Y.

P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boniort, B. Perrin, J. J. Girard, J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–261.

Brehm, C.

P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boniort, B. Perrin, J. J. Girard, J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–261.

Chraplyvy, A. R.

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

Cohen, L. G.

L. G. Cohen, W. L. Mammel, S. J. Jang, “Low loss quadruple clad single-mode lightguides with dispersion below 2ps/km.nm over the 1.28-1.65 μm wavelength range,” Electron. Lett. 18, 1023–1024 (1982).
[CrossRef]

Girard, J. J.

P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boniort, B. Perrin, J. J. Girard, J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–261.

Hattori, H. T.

H. T. Hattori, A. Safaai-Jazi, “New dispersion-shifted fiber with significantly reduced nonlinear effects,” presented at the OSA Annual Meeting, Rochester, N.Y., 20–24 October 1996.

Ishikawa, S.

T. Kato, S. Ishikawa, E. Sasaoka, M. Nishimura, “Low nonlinearity dispersion-shifted fibers employing dual-shaped core profile with depressed cladding,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), p. 60.

Jang, S. J.

L. G. Cohen, W. L. Mammel, S. J. Jang, “Low loss quadruple clad single-mode lightguides with dispersion below 2ps/km.nm over the 1.28-1.65 μm wavelength range,” Electron. Lett. 18, 1023–1024 (1982).
[CrossRef]

Kamiya, T.

S. Arai, Y. Akasaka, Y. Suzuki, T. Kamiya, “Low nonlinearity dispersion-shifted fiber,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997) p. 65.

Kato, T.

T. Kato, S. Ishikawa, E. Sasaoka, M. Nishimura, “Low nonlinearity dispersion-shifted fibers employing dual-shaped core profile with depressed cladding,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), p. 60.

Keck, D. B.

V. A. Bhagarvatula, M. S. Spotz, W. F. Love, D. B. Keck, “Segmented-core single-mode fibers with low loss and low dispersion,” Electron. Lett. 19, 317–318 (1983).
[CrossRef]

Landais, S.

P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boniort, B. Perrin, J. J. Girard, J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–261.

Li, T.

T. Li, “The impact of optical amplifiers on long-distance lightwave communications,” IEEE Proc. 81, 1568–1579 (1993).
[CrossRef]

Liu, Y.

Y. Liu, A. J. Antos, M. A. Newhouse, “Large effective area dispersion-shifted fibers with dual-ring index profiles,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), pp. 165–166.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

Love, W. F.

V. A. Bhagarvatula, M. S. Spotz, W. F. Love, D. B. Keck, “Segmented-core single-mode fibers with low loss and low dispersion,” Electron. Lett. 19, 317–318 (1983).
[CrossRef]

Lu, L. J.

Mammel, W. L.

L. G. Cohen, W. L. Mammel, S. J. Jang, “Low loss quadruple clad single-mode lightguides with dispersion below 2ps/km.nm over the 1.28-1.65 μm wavelength range,” Electron. Lett. 18, 1023–1024 (1982).
[CrossRef]

Marcuse, D.

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

D. Marcuse, “Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion,” J. Lightwave Technol. 9, 356–361 (1991).
[CrossRef]

D. Marcuse, “Microdeformation losses of single-mode fibers,” Appl. Opt. 23, 1082–1091 (1984).
[CrossRef] [PubMed]

Namihira, Y.

Y. Namihira, “Relationship between nonlinear effective area and mode-field-diameter for dispersion shifted fibres,” Electron. Lett. 30, 262–264 (1994).
[CrossRef]

Newhouse, M. A.

Y. Liu, A. J. Antos, M. A. Newhouse, “Large effective area dispersion-shifted fibers with dual-ring index profiles,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), pp. 165–166.

Nishimura, M.

T. Kato, S. Ishikawa, E. Sasaoka, M. Nishimura, “Low nonlinearity dispersion-shifted fibers employing dual-shaped core profile with depressed cladding,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), p. 60.

Nouchi, P.

P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boniort, B. Perrin, J. J. Girard, J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–261.

Perrin, B.

P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boniort, B. Perrin, J. J. Girard, J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–261.

Petermann, K.

K. Petermann, “Constraints for fundamental-mode spot size for broadband dispersion-compensated single-mode fibers,” Electron. Lett. 19, 712–714 (1983).
[CrossRef]

Safaai-Jazi, A.

A. Safaai-Jazi, L. J. Lu, “Evaluation of chromatic dispersion in W-type fibers,” Opt. Lett. 14, 760–762 (1989).
[CrossRef] [PubMed]

H. T. Hattori, A. Safaai-Jazi, “New dispersion-shifted fiber with significantly reduced nonlinear effects,” presented at the OSA Annual Meeting, Rochester, N.Y., 20–24 October 1996.

Sansonetti, P.

P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boniort, B. Perrin, J. J. Girard, J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–261.

Sasaoka, E.

T. Kato, S. Ishikawa, E. Sasaoka, M. Nishimura, “Low nonlinearity dispersion-shifted fibers employing dual-shaped core profile with depressed cladding,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), p. 60.

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

Spotz, M. S.

V. A. Bhagarvatula, M. S. Spotz, W. F. Love, D. B. Keck, “Segmented-core single-mode fibers with low loss and low dispersion,” Electron. Lett. 19, 317–318 (1983).
[CrossRef]

Suzuki, Y.

S. Arai, Y. Akasaka, Y. Suzuki, T. Kamiya, “Low nonlinearity dispersion-shifted fiber,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997) p. 65.

Tkach, R. W.

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (4)

L. G. Cohen, W. L. Mammel, S. J. Jang, “Low loss quadruple clad single-mode lightguides with dispersion below 2ps/km.nm over the 1.28-1.65 μm wavelength range,” Electron. Lett. 18, 1023–1024 (1982).
[CrossRef]

V. A. Bhagarvatula, M. S. Spotz, W. F. Love, D. B. Keck, “Segmented-core single-mode fibers with low loss and low dispersion,” Electron. Lett. 19, 317–318 (1983).
[CrossRef]

K. Petermann, “Constraints for fundamental-mode spot size for broadband dispersion-compensated single-mode fibers,” Electron. Lett. 19, 712–714 (1983).
[CrossRef]

Y. Namihira, “Relationship between nonlinear effective area and mode-field-diameter for dispersion shifted fibres,” Electron. Lett. 30, 262–264 (1994).
[CrossRef]

IEEE Proc. (1)

T. Li, “The impact of optical amplifiers on long-distance lightwave communications,” IEEE Proc. 81, 1568–1579 (1993).
[CrossRef]

J. Lightwave Technol. (2)

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

D. Marcuse, “Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion,” J. Lightwave Technol. 9, 356–361 (1991).
[CrossRef]

Opt. Lett. (1)

Other (8)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989).

P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boniort, B. Perrin, J. J. Girard, J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–261.

Y. Liu, A. J. Antos, M. A. Newhouse, “Large effective area dispersion-shifted fibers with dual-ring index profiles,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), pp. 165–166.

S. Arai, Y. Akasaka, Y. Suzuki, T. Kamiya, “Low nonlinearity dispersion-shifted fiber,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997) p. 65.

T. Kato, S. Ishikawa, E. Sasaoka, M. Nishimura, “Low nonlinearity dispersion-shifted fibers employing dual-shaped core profile with depressed cladding,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), p. 60.

H. T. Hattori, A. Safaai-Jazi, “New dispersion-shifted fiber with significantly reduced nonlinear effects,” presented at the OSA Annual Meeting, Rochester, N.Y., 20–24 October 1996.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, England, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Refractive-index profiles for (a) a reference dispersion-shifted W-fiber and (b) and (c) depressed-core, large effective-area dispersion-shifted fibers. Fiber dimensions and material compositions are given in Tables 1, 3, respectively.

Fig. 2
Fig. 2

Normalized field distributions at λ = 1.55 μm for (a) the reference W fiber and (b)–(e) large effective-area depressed-core fibers.

Fig. 3
Fig. 3

Variations of effective area versus wavelength for fibers a–e with parameters given in Table 1.

Fig. 4
Fig. 4

Variations of mode-field diameter versus wavelength for fibers a–e with parameters given in Table 1.

Fig. 5
Fig. 5

Variations of dispersion versus wavelength for fibers a–e with parameters given in Table 1.

Fig. 6
Fig. 6

Normalized field distributions at λ = 1.55 μm for fibers f–h with parameters given in Table 2.

Fig. 7
Fig. 7

Variations of bending loss versus bending radius, at λ = 1.55 μm, for fibers a–e.

Fig. 8
Fig. 8

Variations of microbending loss of fiber c versus wavelength for several values of correlation lengths.

Tables (3)

Tables Icon

Table 1 Effective area, Mode-Field Diameter, Dispersion, Dispersion Slope (all at λ = 1.55 μm), Cutoff Wavelength, and Quality Factor for a Reference W-type and Several Triple-Clad Depressed-Core Fibersa

Tables Icon

Table 2 Effective Area, Mode-Field Diameter, Dispersion, Dispersion Slope (all at λ = 1.55 μm), Cutoff Wavelength, and Quality Factor for Triple-Clad Depressed-Core Fibers with Different Material Compositions

Tables Icon

Table 3 Material Compositions and Index Difference Δ = [(nM2)2 - (nMi)2]/2(nM2)2 for Fibers in Tables 1, 2

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ψ r = A 1 Z ν 1 x 1 r 0 r a 1 A i Z ν i x i r + A ¯ i Z ¯ ν i x i r a i - 1 < r a i ,   i = 2 ,   3 ,     ,   N - 1 , A ¯ N K ν x N r r > a N - 1
Z ν i = J ν , if   β < k 0 n i I ν , if   β > k 0 n i ,
Z ¯ ν i = Y ν , if   β < k 0 n i K ν , if   β > k 0 n i ,
x i = | k o 2 n i 2 - β 2 | 1 / 2 ,
δ β = -   t · E t E t · t ln   n 2 r d S 2 β     | E t | 2 d S = - i = 1 N - 1 r ψ r d ψ r d r r = a i ln n i + 1 n i 2 β   0   ψ 2 r d r ,
D = - λ c d 2 β ¯ ν d λ 2 ,
A eff = 2 π   0   ψ 2 r r d r 2 0   ψ 4 r r d r ,
d o 2 = 8   0   ψ 2 r r d r 0 d ψ r d r 2 r d r ,
n i 2 λ = 1 + p = 1 3 A ip λ 2 λ 2 - λ ip 2 ,

Metrics