Abstract

Ultrasmall light modulators have been made by sandwiching a polymer-dispersed liquid crystal (PDLC) between two ferrules with optical fibers. The device can modulate light independent of the state of polarization, because the PDLC becomes transparent or opaque when either sufficient or no voltage is applied to the film. The PDLC was prepared by mixing and annealing a prepolymer and nematic liquid crystal with large anisotropy. An optical fiber modulator with a 30-μm thick PDLC film had an extinction ratio of 8:1–33:1, an insertion loss of 1.3 dB, and rise and decay times of 4 ms at a wavelength of 1.3 μm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot etalon,” Appl. Phys. Lett. 57, 1718–1720 (1990).
    [CrossRef]
  2. M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi, V. Lehman, “An electrically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element,” IEEE Photon. Technol. Lett. 2, 787–789 (1990).
    [CrossRef]
  3. M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, R. Spicer, “Electrically tunable liquid-crystal-etalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
    [CrossRef]
  4. R. A. Soref, “N × N and 1 × N switching with chiral nematic liquid crystals,” Appl. Opt. 30, 183–184 (1991).
    [CrossRef] [PubMed]
  5. J. S. Patel, S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot etalon with a liquid-crystal film,” Appl. Phys. Lett. 58, 2491–2493 (1991).
    [CrossRef]
  6. K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
    [CrossRef]
  7. K. Hirabayashi, T. Kurokawa, “Improvement of the transmission spectra of tunable wavelength-selective liquid crystal Fabry–Perot interferometer filters,” Jpn. J. Appl. Phys. 32, L1425–L1428 (1993).
    [CrossRef]
  8. M. Kobayashi, H. Terui, M. Kawachi, J. Noda, “2 × 2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
    [CrossRef]
  9. Y. Okamura, K. Kitatani, S. Yamamoto, “Electrooptic leaky anisotropic waveguides using nematic liquid crystal overlayers,” IEEE J. Lightwave Technol. LT-2, 292–295 (1984).
    [CrossRef]
  10. E. S. Goldburt, P. St. J. Russell, “Nonlinear single-mode fiber coupler using liquid crystals,” Appl. Phys. Lett. 46, 338–340 (1985).
    [CrossRef]
  11. K. Liu, W. V. Sorin, H. J. Shaw, “Single-mode-fiber evanescent polarizer/amplitude modulator using liquid crystals,” Opt. Lett. 11, 180–182 (1986).
    [CrossRef] [PubMed]
  12. P. G. Verly, “Low-loss liquid-crystal-clad waveguide switching with a large angular separation of the optical beams,” Can. J. Phys. 65, 476–483 (1987).
    [CrossRef]
  13. R. Kashyap, C. S. Winter, B. K. Nayar, “Polarization-desensitized liquid-crystal overlay optical-fiber modulator,” Opt. Lett. 13, 401–403 (1988).
    [CrossRef]
  14. A. Karppinen, H. Kopola, R. Myllyla, “Scattering liquid crystal in optical attenuator applications,” in Liquid-Crystal Devices and Materials, P. S. Drazaic, U. Efron, eds., Proc. SPIE1455, 179–189 (1991).
    [CrossRef]
  15. J. L. Fergason, “Polymer encapsulated nematic liquid crystals for display and light control applications,” SID Int. Symp. Dig. 16, 68–70 (1985).
  16. J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
    [CrossRef]
  17. B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
    [CrossRef]
  18. A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
    [CrossRef]
  19. P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
    [CrossRef]
  20. G. P. Montgomery, “Polymer-dispersed and encapsulated liquid crystal films,” in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. G. Granqvist, C. M. Lampert, eds., Vol. IS04 of SPIE Institute Series577–606 (SPIE Press, Bellingham, Wash., 1990).
  21. T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
    [CrossRef]
  22. T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.
  23. A. Fuh, O. Caporaletti, “Polymer dispersed nematic liquid crystal films: the density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66, 5278–5284 (1989).
    [CrossRef]
  24. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
  25. J. K. Wheeler, J. Ocenasek, P. P. Bohn, “Two-way transmission using electro-optical modulator,” Electron. Lett. 22, 479–481 (1986).
    [CrossRef]
  26. P. J. Duthie, M. J. Wale, I. Bennion, J. Hankey, “Bidirectional fiber-optical link using selective modulation,” Electron. Lett. 22, 517–518 (1986).
    [CrossRef]
  27. E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous single-fiber transmission of video and bidirectional voice/data using LiNbO3 guided-wave devices,” IEEE J. Lightwave Technol. 6, 937–944 (1988).
    [CrossRef]
  28. M. Maeda, T. Ishikawa, K. Oyamada, S. Fujisawa, K. Murakami, Y. Utsumi, “Hi-vision optical CATV system employing demand access technology,” NHK (Nippon Hoso Kyokai) Giken Res. Dev. 18, 18–26 (1992).

1993 (1)

K. Hirabayashi, T. Kurokawa, “Improvement of the transmission spectra of tunable wavelength-selective liquid crystal Fabry–Perot interferometer filters,” Jpn. J. Appl. Phys. 32, L1425–L1428 (1993).
[CrossRef]

1992 (1)

M. Maeda, T. Ishikawa, K. Oyamada, S. Fujisawa, K. Murakami, Y. Utsumi, “Hi-vision optical CATV system employing demand access technology,” NHK (Nippon Hoso Kyokai) Giken Res. Dev. 18, 18–26 (1992).

1991 (3)

R. A. Soref, “N × N and 1 × N switching with chiral nematic liquid crystals,” Appl. Opt. 30, 183–184 (1991).
[CrossRef] [PubMed]

J. S. Patel, S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot etalon with a liquid-crystal film,” Appl. Phys. Lett. 58, 2491–2493 (1991).
[CrossRef]

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

1990 (3)

J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot etalon,” Appl. Phys. Lett. 57, 1718–1720 (1990).
[CrossRef]

M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi, V. Lehman, “An electrically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element,” IEEE Photon. Technol. Lett. 2, 787–789 (1990).
[CrossRef]

M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, R. Spicer, “Electrically tunable liquid-crystal-etalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

1989 (2)

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

A. Fuh, O. Caporaletti, “Polymer dispersed nematic liquid crystal films: the density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66, 5278–5284 (1989).
[CrossRef]

1988 (4)

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
[CrossRef]

R. Kashyap, C. S. Winter, B. K. Nayar, “Polarization-desensitized liquid-crystal overlay optical-fiber modulator,” Opt. Lett. 13, 401–403 (1988).
[CrossRef]

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous single-fiber transmission of video and bidirectional voice/data using LiNbO3 guided-wave devices,” IEEE J. Lightwave Technol. 6, 937–944 (1988).
[CrossRef]

1987 (2)

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

P. G. Verly, “Low-loss liquid-crystal-clad waveguide switching with a large angular separation of the optical beams,” Can. J. Phys. 65, 476–483 (1987).
[CrossRef]

1986 (4)

K. Liu, W. V. Sorin, H. J. Shaw, “Single-mode-fiber evanescent polarizer/amplitude modulator using liquid crystals,” Opt. Lett. 11, 180–182 (1986).
[CrossRef] [PubMed]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

J. K. Wheeler, J. Ocenasek, P. P. Bohn, “Two-way transmission using electro-optical modulator,” Electron. Lett. 22, 479–481 (1986).
[CrossRef]

P. J. Duthie, M. J. Wale, I. Bennion, J. Hankey, “Bidirectional fiber-optical link using selective modulation,” Electron. Lett. 22, 517–518 (1986).
[CrossRef]

1985 (2)

E. S. Goldburt, P. St. J. Russell, “Nonlinear single-mode fiber coupler using liquid crystals,” Appl. Phys. Lett. 46, 338–340 (1985).
[CrossRef]

J. L. Fergason, “Polymer encapsulated nematic liquid crystals for display and light control applications,” SID Int. Symp. Dig. 16, 68–70 (1985).

1984 (1)

Y. Okamura, K. Kitatani, S. Yamamoto, “Electrooptic leaky anisotropic waveguides using nematic liquid crystal overlayers,” IEEE J. Lightwave Technol. LT-2, 292–295 (1984).
[CrossRef]

1982 (1)

M. Kobayashi, H. Terui, M. Kawachi, J. Noda, “2 × 2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Andreadakis, N.

J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot etalon,” Appl. Phys. Lett. 57, 1718–1720 (1990).
[CrossRef]

Bennion, I.

P. J. Duthie, M. J. Wale, I. Bennion, J. Hankey, “Bidirectional fiber-optical link using selective modulation,” Electron. Lett. 22, 517–518 (1986).
[CrossRef]

Berreman, D. W.

J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot etalon,” Appl. Phys. Lett. 57, 1718–1720 (1990).
[CrossRef]

Bohn, P. P.

J. K. Wheeler, J. Ocenasek, P. P. Bohn, “Two-way transmission using electro-optical modulator,” Electron. Lett. 22, 479–481 (1986).
[CrossRef]

Caporaletti, O.

A. Fuh, O. Caporaletti, “Polymer dispersed nematic liquid crystal films: the density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66, 5278–5284 (1989).
[CrossRef]

Chen, Y. C.

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous single-fiber transmission of video and bidirectional voice/data using LiNbO3 guided-wave devices,” IEEE J. Lightwave Technol. 6, 937–944 (1988).
[CrossRef]

Doane, J. W.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Drazaic, P. S.

P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
[CrossRef]

Duthie, P. J.

P. J. Duthie, M. J. Wale, I. Bennion, J. Hankey, “Bidirectional fiber-optical link using selective modulation,” Electron. Lett. 22, 517–518 (1986).
[CrossRef]

Fergason, J. L.

J. L. Fergason, “Polymer encapsulated nematic liquid crystals for display and light control applications,” SID Int. Symp. Dig. 16, 68–70 (1985).

Fuh, A.

A. Fuh, O. Caporaletti, “Polymer dispersed nematic liquid crystal films: the density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66, 5278–5284 (1989).
[CrossRef]

Fujisawa, S.

M. Maeda, T. Ishikawa, K. Oyamada, S. Fujisawa, K. Murakami, Y. Utsumi, “Hi-vision optical CATV system employing demand access technology,” NHK (Nippon Hoso Kyokai) Giken Res. Dev. 18, 18–26 (1992).

Fujisawa, T.

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

Goldburt, E. S.

E. S. Goldburt, P. St. J. Russell, “Nonlinear single-mode fiber coupler using liquid crystals,” Appl. Phys. Lett. 46, 338–340 (1985).
[CrossRef]

Golemme, A.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

Hankey, J.

P. J. Duthie, M. J. Wale, I. Bennion, J. Hankey, “Bidirectional fiber-optical link using selective modulation,” Electron. Lett. 22, 517–518 (1986).
[CrossRef]

Hirabayashi, K.

K. Hirabayashi, T. Kurokawa, “Improvement of the transmission spectra of tunable wavelength-selective liquid crystal Fabry–Perot interferometer filters,” Jpn. J. Appl. Phys. 32, L1425–L1428 (1993).
[CrossRef]

Horrobin, J.

M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, R. Spicer, “Electrically tunable liquid-crystal-etalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

Ishikawa, T.

M. Maeda, T. Ishikawa, K. Oyamada, S. Fujisawa, K. Murakami, Y. Utsumi, “Hi-vision optical CATV system employing demand access technology,” NHK (Nippon Hoso Kyokai) Giken Res. Dev. 18, 18–26 (1992).

Kajiyama, T.

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Karppinen, A.

A. Karppinen, H. Kopola, R. Myllyla, “Scattering liquid crystal in optical attenuator applications,” in Liquid-Crystal Devices and Materials, P. S. Drazaic, U. Efron, eds., Proc. SPIE1455, 179–189 (1991).
[CrossRef]

Kashyap, R.

Kawachi, M.

M. Kobayashi, H. Terui, M. Kawachi, J. Noda, “2 × 2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

Kikuchi, H.

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Kitatani, K.

Y. Okamura, K. Kitatani, S. Yamamoto, “Electrooptic leaky anisotropic waveguides using nematic liquid crystal overlayers,” IEEE J. Lightwave Technol. LT-2, 292–295 (1984).
[CrossRef]

Kobayashi, M.

M. Kobayashi, H. Terui, M. Kawachi, J. Noda, “2 × 2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

Kopola, H.

A. Karppinen, H. Kopola, R. Myllyla, “Scattering liquid crystal in optical attenuator applications,” in Liquid-Crystal Devices and Materials, P. S. Drazaic, U. Efron, eds., Proc. SPIE1455, 179–189 (1991).
[CrossRef]

Kurokawa, T.

K. Hirabayashi, T. Kurokawa, “Improvement of the transmission spectra of tunable wavelength-selective liquid crystal Fabry–Perot interferometer filters,” Jpn. J. Appl. Phys. 32, L1425–L1428 (1993).
[CrossRef]

Lee, S. D.

J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot etalon,” Appl. Phys. Lett. 57, 1718–1720 (1990).
[CrossRef]

Lee, S.-D.

J. S. Patel, S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot etalon with a liquid-crystal film,” Appl. Phys. Lett. 58, 2491–2493 (1991).
[CrossRef]

Lehman, V.

M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi, V. Lehman, “An electrically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element,” IEEE Photon. Technol. Lett. 2, 787–789 (1990).
[CrossRef]

Lin, C.

M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi, V. Lehman, “An electrically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element,” IEEE Photon. Technol. Lett. 2, 787–789 (1990).
[CrossRef]

J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot etalon,” Appl. Phys. Lett. 57, 1718–1720 (1990).
[CrossRef]

M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, R. Spicer, “Electrically tunable liquid-crystal-etalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

Lisco, R. J.

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous single-fiber transmission of video and bidirectional voice/data using LiNbO3 guided-wave devices,” IEEE J. Lightwave Technol. 6, 937–944 (1988).
[CrossRef]

Liu, K.

Maeda, M.

M. Maeda, T. Ishikawa, K. Oyamada, S. Fujisawa, K. Murakami, Y. Utsumi, “Hi-vision optical CATV system employing demand access technology,” NHK (Nippon Hoso Kyokai) Giken Res. Dev. 18, 18–26 (1992).

Maeda, M. W.

M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi, V. Lehman, “An electrically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element,” IEEE Photon. Technol. Lett. 2, 787–789 (1990).
[CrossRef]

M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, R. Spicer, “Electrically tunable liquid-crystal-etalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Maruyama, K.

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

Matsumoto, T.

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

Miyamoto, A.

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Montgomery, G. P.

G. P. Montgomery, “Polymer-dispersed and encapsulated liquid crystal films,” in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. G. Granqvist, C. M. Lampert, eds., Vol. IS04 of SPIE Institute Series577–606 (SPIE Press, Bellingham, Wash., 1990).

Morimura, Y.

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Murakami, K.

M. Maeda, T. Ishikawa, K. Oyamada, S. Fujisawa, K. Murakami, Y. Utsumi, “Hi-vision optical CATV system employing demand access technology,” NHK (Nippon Hoso Kyokai) Giken Res. Dev. 18, 18–26 (1992).

Murphy, E. J.

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous single-fiber transmission of video and bidirectional voice/data using LiNbO3 guided-wave devices,” IEEE J. Lightwave Technol. 6, 937–944 (1988).
[CrossRef]

Myllyla, R.

A. Karppinen, H. Kopola, R. Myllyla, “Scattering liquid crystal in optical attenuator applications,” in Liquid-Crystal Devices and Materials, P. S. Drazaic, U. Efron, eds., Proc. SPIE1455, 179–189 (1991).
[CrossRef]

Nayar, B. K.

Neubert, M. E.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

Noda, J.

M. Kobayashi, H. Terui, M. Kawachi, J. Noda, “2 × 2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

Noguchi, K.

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

Ocenasek, J.

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous single-fiber transmission of video and bidirectional voice/data using LiNbO3 guided-wave devices,” IEEE J. Lightwave Technol. 6, 937–944 (1988).
[CrossRef]

J. K. Wheeler, J. Ocenasek, P. P. Bohn, “Two-way transmission using electro-optical modulator,” Electron. Lett. 22, 479–481 (1986).
[CrossRef]

Ogawa, H.

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

Okamura, Y.

Y. Okamura, K. Kitatani, S. Yamamoto, “Electrooptic leaky anisotropic waveguides using nematic liquid crystal overlayers,” IEEE J. Lightwave Technol. LT-2, 292–295 (1984).
[CrossRef]

Oyamada, K.

M. Maeda, T. Ishikawa, K. Oyamada, S. Fujisawa, K. Murakami, Y. Utsumi, “Hi-vision optical CATV system employing demand access technology,” NHK (Nippon Hoso Kyokai) Giken Res. Dev. 18, 18–26 (1992).

Patel, J. S.

J. S. Patel, S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot etalon with a liquid-crystal film,” Appl. Phys. Lett. 58, 2491–2493 (1991).
[CrossRef]

M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi, V. Lehman, “An electrically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element,” IEEE Photon. Technol. Lett. 2, 787–789 (1990).
[CrossRef]

M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, R. Spicer, “Electrically tunable liquid-crystal-etalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot etalon,” Appl. Phys. Lett. 57, 1718–1720 (1990).
[CrossRef]

Saifi, M. A.

J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot etalon,” Appl. Phys. Lett. 57, 1718–1720 (1990).
[CrossRef]

M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi, V. Lehman, “An electrically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element,” IEEE Photon. Technol. Lett. 2, 787–789 (1990).
[CrossRef]

Sakano, T.

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

Sandahl, C. R.

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous single-fiber transmission of video and bidirectional voice/data using LiNbO3 guided-wave devices,” IEEE J. Lightwave Technol. 6, 937–944 (1988).
[CrossRef]

Shaw, H. J.

Smith, D. A.

M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi, V. Lehman, “An electrically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element,” IEEE Photon. Technol. Lett. 2, 787–789 (1990).
[CrossRef]

Soref, R. A.

Sorin, W. V.

Spicer, R.

M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, R. Spicer, “Electrically tunable liquid-crystal-etalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

St. J. Russell, P.

E. S. Goldburt, P. St. J. Russell, “Nonlinear single-mode fiber coupler using liquid crystals,” Appl. Phys. Lett. 46, 338–340 (1985).
[CrossRef]

Terui, H.

M. Kobayashi, H. Terui, M. Kawachi, J. Noda, “2 × 2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

Utsumi, Y.

M. Maeda, T. Ishikawa, K. Oyamada, S. Fujisawa, K. Murakami, Y. Utsumi, “Hi-vision optical CATV system employing demand access technology,” NHK (Nippon Hoso Kyokai) Giken Res. Dev. 18, 18–26 (1992).

Vaz, N. A.

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Verly, P. G.

P. G. Verly, “Low-loss liquid-crystal-clad waveguide switching with a large angular separation of the optical beams,” Can. J. Phys. 65, 476–483 (1987).
[CrossRef]

Wale, M. J.

P. J. Duthie, M. J. Wale, I. Bennion, J. Hankey, “Bidirectional fiber-optical link using selective modulation,” Electron. Lett. 22, 517–518 (1986).
[CrossRef]

West, J. L.

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

Wheeler, J. K.

J. K. Wheeler, J. Ocenasek, P. P. Bohn, “Two-way transmission using electro-optical modulator,” Electron. Lett. 22, 479–481 (1986).
[CrossRef]

Winter, C. S.

Wu, B.-G.

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Yamamoto, S.

Y. Okamura, K. Kitatani, S. Yamamoto, “Electrooptic leaky anisotropic waveguides using nematic liquid crystal overlayers,” IEEE J. Lightwave Technol. LT-2, 292–295 (1984).
[CrossRef]

Zumer, S.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot etalon,” Appl. Phys. Lett. 57, 1718–1720 (1990).
[CrossRef]

J. S. Patel, S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot etalon with a liquid-crystal film,” Appl. Phys. Lett. 58, 2491–2493 (1991).
[CrossRef]

E. S. Goldburt, P. St. J. Russell, “Nonlinear single-mode fiber coupler using liquid crystals,” Appl. Phys. Lett. 46, 338–340 (1985).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Can. J. Phys. (1)

P. G. Verly, “Low-loss liquid-crystal-clad waveguide switching with a large angular separation of the optical beams,” Can. J. Phys. 65, 476–483 (1987).
[CrossRef]

Chem. Lett. (1)

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Electron. Lett. (2)

J. K. Wheeler, J. Ocenasek, P. P. Bohn, “Two-way transmission using electro-optical modulator,” Electron. Lett. 22, 479–481 (1986).
[CrossRef]

P. J. Duthie, M. J. Wale, I. Bennion, J. Hankey, “Bidirectional fiber-optical link using selective modulation,” Electron. Lett. 22, 517–518 (1986).
[CrossRef]

IEEE J. Lightwave Technol. (3)

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous single-fiber transmission of video and bidirectional voice/data using LiNbO3 guided-wave devices,” IEEE J. Lightwave Technol. 6, 937–944 (1988).
[CrossRef]

Y. Okamura, K. Kitatani, S. Yamamoto, “Electrooptic leaky anisotropic waveguides using nematic liquid crystal overlayers,” IEEE J. Lightwave Technol. LT-2, 292–295 (1984).
[CrossRef]

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Kobayashi, H. Terui, M. Kawachi, J. Noda, “2 × 2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi, V. Lehman, “An electrically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element,” IEEE Photon. Technol. Lett. 2, 787–789 (1990).
[CrossRef]

M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, R. Spicer, “Electrically tunable liquid-crystal-etalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

J. Appl. Phys. (2)

A. Fuh, O. Caporaletti, “Polymer dispersed nematic liquid crystal films: the density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66, 5278–5284 (1989).
[CrossRef]

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Hirabayashi, T. Kurokawa, “Improvement of the transmission spectra of tunable wavelength-selective liquid crystal Fabry–Perot interferometer filters,” Jpn. J. Appl. Phys. 32, L1425–L1428 (1993).
[CrossRef]

Liq. Cryst. (1)

P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
[CrossRef]

NHK (Nippon Hoso Kyokai) Giken Res. Dev. (1)

M. Maeda, T. Ishikawa, K. Oyamada, S. Fujisawa, K. Murakami, Y. Utsumi, “Hi-vision optical CATV system employing demand access technology,” NHK (Nippon Hoso Kyokai) Giken Res. Dev. 18, 18–26 (1992).

Opt. Lett. (2)

Phys. Rev. (1)

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

SID Int. Symp. Dig. (1)

J. L. Fergason, “Polymer encapsulated nematic liquid crystals for display and light control applications,” SID Int. Symp. Dig. 16, 68–70 (1985).

Other (3)

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

G. P. Montgomery, “Polymer-dispersed and encapsulated liquid crystal films,” in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. G. Granqvist, C. M. Lampert, eds., Vol. IS04 of SPIE Institute Series577–606 (SPIE Press, Bellingham, Wash., 1990).

A. Karppinen, H. Kopola, R. Myllyla, “Scattering liquid crystal in optical attenuator applications,” in Liquid-Crystal Devices and Materials, P. S. Drazaic, U. Efron, eds., Proc. SPIE1455, 179–189 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Section of the optical fiber modulator. A PDLC film is inserted between the metal ferrule and insulated sleeve. Transparent electrodes are deposited in advance on the sides of the ferrules by vacuum evaporation. (a) In the off state, the LC molecules retain their initial state. Light that propagates through one optical fiber is, therefore, scattered, minimizing the output of the other optical fiber. (b) In the on state, a greater part of the light that propagates through one optical fiber reaches the other optical fiber without scattering.

Fig. 2
Fig. 2

Microscope photograph of a PDLC film with M = 0.58.

Fig. 3
Fig. 3

Schlieren optical system. Light of θ < 6 deg can be considered to be a signal. L is the focal length of the lens.

Fig. 4
Fig. 4

Applied voltage dependence of the transmittance of a PDLC cell, where M = 0.58 and d = 18 μm.

Fig. 5
Fig. 5

Relationship between the mixing ratio M and several parameters of the PDLC cell with a thickness of d = 18 μm: (a) maximum transmission T M versus M, (b) extinction ratio versus M, (c) threshold voltage V T versus M, (d) rise time t on and decay time t off versus M.

Fig. 6
Fig. 6

Weight ratios of PDLC constituents: nematic LC (GR-63), EPO-TEK 310 and 301 resins. We used a PDLC material with this composition for our experiments.

Fig. 7
Fig. 7

Relationship between the transmittance and spectrum of a PDLC, where M = 0.58 for various values of applied voltage V 0 (frequency f = 1kHz).

Fig. 8
Fig. 8

Relationship between the coupling loss (theoretical value), extinction ratio (measured value), and PDLC film thickness of the optical fiber modulator where W = 10 μm.

Fig. 9
Fig. 9

Steps to fabricate the optical fiber modulator: (1) blend plastic spacers (30-μm diameter) at a density of 100 particles/mm3 into a mixture of the prepolymer and nematic LC and stir well, (2) inject the material into the split sleeve with a ferrule inserted inside, (3) push the other ferrule lightly into the sleeve to achieve the designated gap length, (4) heat the element at 70 °C for 2 h to form a PDLC film, (5) connect the lead cables.

Fig. 10
Fig. 10

Photograph of the optical fiber modulator: (1) ferrule, (2) split sleeve.

Fig. 11
Fig. 11

Experimental system for measurement of the basic characteristics of the optical fiber modulator. The output light of the laser diode (wavelength λ = 1.3 μm) is modulated by the optical fiber modulator, which propagates through a single-mode 1-km optical fiber and impinges on photodetector P A .

Fig. 12
Fig. 12

Applied voltage dependence of the transmittance of the optical fiber modulator, where d = 30 μm for a wavelength of 1.3 μm.

Fig. 13
Fig. 13

Time response of the optical fiber modulator in the system shown in Fig. 11. P A is the received signal and V 0 is the applied voltage (2 ms/div).

Fig. 14
Fig. 14

Basic experimental system for bidirectional optical communication. Laser diode light (1.3-μm wavelength) reflects from the end of the optical fiber at terminal A; makes a return trip through the optical fiber modulator, a 1-km stretch of optical fiber, and directional coupler; and impinges on the photodetector at terminal B.

Fig. 15
Fig. 15

Time response of the optical fiber modulator in the system shown in Fig. 15. P B is the received signal and V 0 is the applied voltage (2 ms/div).

Fig. 16
Fig. 16

Basic bidirectional optical fiber communication system. The laser diode light on the transmitting side, modulated by high-frequency signals, propagates through the optical fiber and is modulated by low-frequency signals through the optical fiber modulator to reach the receiving-side photodetector PD1. The transmitting-side signals contained in the detected signal were selected by a high-pass filter. Light reflecting at the end of the optical fiber connected to PD1 passes through the optical fiber modulator, optical fiber, and directional coupler, and impinges on another photodetector PD2. The receiving-side signals contained in the detected signal were selected by means of a low-pass filter.

Tables (3)

Tables Icon

Table 1 Basic Characteristics of the Nematic LC Material used for the PDLC

Tables Icon

Table 2 Characteristics of the Polymers used for the PDLC

Tables Icon

Table 3 Optical Losses of the Optical Fiber Modulatora

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n p n o ,     n o     n e .
L C = - 10   log 4 Z 2 + 1 ) / 2 Z 2 + 1 2 + Z 2   dB ,   Z = 2 λ d / π n c n p W 2 ,
L T = L C + L S + L E .
L C = 0.128 .
1 - exp - α × 10 - 3 + L X = 0.284 ,
1 - exp - α 3 × 10 - 3 + L X = 0.355 ,
α = 38.4   cm - 1 .
L S = 1 - exp - α 3 × 10 - 3 = 0.109 .
L E = 0.017 .
L C > L S     L E

Metrics