Abstract

The channel specifications of the Global Imager onboard the Advanced Earth Observing Satellite II have been determined by extensive numerical experiments. The results show that there is an optimum feasible position for each ocean color channel. The bandwidth of the 0.763-μm channel should be less than 10 nm for good sensitivity to the cloud top height and geometric thickness of the cloud layer; a 40-nm bandwidth is suitable for the 1.38-μm channel to have the strongest contrast between cloudy and clear radiance with a sufficient radiant energy; and a 3.7-μm channel is better than a 3.95-μm channel for estimation of the sea surface temperature (SST) and determination of the cloud particle size when the bandwidth of the channel is 0.33 μm. A three-wavelength combination of 6.7, 7.3, and 7.5 μm is an optimized choice for water vapor profiling. The combination of 8.6, 10.8, and 12.0 μm is suitable for cloud microphysics and SST retrievals with the split-window technique.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
    [CrossRef]
  2. F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  3. T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
    [CrossRef]
  4. T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
    [CrossRef]
  5. T. Nakajima, M. D. King, “Asymptotic theory for optically thick layers: application to the discrete ordinates method,” Appl. Opt. 31, 7669–7683 (1992).
    [CrossRef] [PubMed]
  6. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
    [CrossRef] [PubMed]
  7. S. W. Jeffrey, “Algal pigment system,” in Primary Productivity in the Sea, P. G. Falkowsky, ed. (Plenum, New York, 1980), pp. 33–58.
    [CrossRef]
  8. D. L. B. Jupp, J. T. O. Kirk, G. P. Harris, “Detection, identification and mapping of cyanobacteria using remote sensing to measure the optical quality of turbid inland waters,” Aust. J. Mar. Freshwater Res. 45, 801–828 (1994).
    [CrossRef]
  9. M. Kishino, S. Sugihara, N. Okami, “Influence of fluorescence of chlorophyll a on underwater upward irradiance spectrum,” La mer 22, 224–232 (1984).
  10. R. M. Letelier, M. R. Abott, “An analysis of chlorophyll fluorescence algorithm for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sensing Environ. 58, 215–223 (1996).
    [CrossRef]
  11. G. Yamamoto, D. Q. Wark, “Discussion of the Letter by R. A. Hanel, determination of cloud altitude from a satellite,” J. Geophys. Res. 66, 3596 (1961).
    [CrossRef]
  12. J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical Study,” J. Appl. Meteorol. 30, 1245–1259 (1991).
    [CrossRef]
  13. J. Fischer, W. Cordes, A. Schmitz-Peiffer, W. Renger, P. Mörl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: Measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
    [CrossRef]
  14. S. Asano, M. Shiobara, A. Uchiyama, “Estimation of cloud physical parameters from airborne solar spectral reflectance measurements for stratocumulus clouds,” J. Atmos. Sci. 52, 3556–3576 (1995).
    [CrossRef]
  15. B.-C. Gao, A. F. H. Goetz, W. J. Wiscombe, “Cirrus cloud detection from airborne imaging spectrometer data using 1.38 micron water vapor band,” Geophys. Res. Lett. 20, 301–304 (1993).
    [CrossRef]
  16. K. Arai, “A method for surface temperature retrieval with ASTER/TIR,” in Proceedings of 1994 International Geoscience and Remote Sensing Symposium, T. I. Stain, ed. (Institute of Electrical and Electronics Engineers, New Jersey, 1994), p. 199.
    [CrossRef]
  17. Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994).
    [CrossRef]
  18. T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
    [CrossRef]

1996

R. M. Letelier, M. R. Abott, “An analysis of chlorophyll fluorescence algorithm for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sensing Environ. 58, 215–223 (1996).
[CrossRef]

1995

S. Asano, M. Shiobara, A. Uchiyama, “Estimation of cloud physical parameters from airborne solar spectral reflectance measurements for stratocumulus clouds,” J. Atmos. Sci. 52, 3556–3576 (1995).
[CrossRef]

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

1994

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994).
[CrossRef]

D. L. B. Jupp, J. T. O. Kirk, G. P. Harris, “Detection, identification and mapping of cyanobacteria using remote sensing to measure the optical quality of turbid inland waters,” Aust. J. Mar. Freshwater Res. 45, 801–828 (1994).
[CrossRef]

1993

B.-C. Gao, A. F. H. Goetz, W. J. Wiscombe, “Cirrus cloud detection from airborne imaging spectrometer data using 1.38 micron water vapor band,” Geophys. Res. Lett. 20, 301–304 (1993).
[CrossRef]

1992

T. Nakajima, M. D. King, “Asymptotic theory for optically thick layers: application to the discrete ordinates method,” Appl. Opt. 31, 7669–7683 (1992).
[CrossRef] [PubMed]

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

1991

J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical Study,” J. Appl. Meteorol. 30, 1245–1259 (1991).
[CrossRef]

J. Fischer, W. Cordes, A. Schmitz-Peiffer, W. Renger, P. Mörl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: Measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[CrossRef]

1988

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[CrossRef] [PubMed]

1986

T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

1984

M. Kishino, S. Sugihara, N. Okami, “Influence of fluorescence of chlorophyll a on underwater upward irradiance spectrum,” La mer 22, 224–232 (1984).

1961

G. Yamamoto, D. Q. Wark, “Discussion of the Letter by R. A. Hanel, determination of cloud altitude from a satellite,” J. Geophys. Res. 66, 3596 (1961).
[CrossRef]

Abott, M. R.

R. M. Letelier, M. R. Abott, “An analysis of chlorophyll fluorescence algorithm for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sensing Environ. 58, 215–223 (1996).
[CrossRef]

Anderson, G. P.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Arai, K.

K. Arai, “A method for surface temperature retrieval with ASTER/TIR,” in Proceedings of 1994 International Geoscience and Remote Sensing Symposium, T. I. Stain, ed. (Institute of Electrical and Electronics Engineers, New Jersey, 1994), p. 199.
[CrossRef]

Arbeu, L. W.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Asano, S.

S. Asano, M. Shiobara, A. Uchiyama, “Estimation of cloud physical parameters from airborne solar spectral reflectance measurements for stratocumulus clouds,” J. Atmos. Sci. 52, 3556–3576 (1995).
[CrossRef]

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Clough, S. A.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Cordes, W.

J. Fischer, W. Cordes, A. Schmitz-Peiffer, W. Renger, P. Mörl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: Measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[CrossRef]

Fischer, J.

J. Fischer, W. Cordes, A. Schmitz-Peiffer, W. Renger, P. Mörl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: Measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[CrossRef]

J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical Study,” J. Appl. Meteorol. 30, 1245–1259 (1991).
[CrossRef]

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Gao, B.-C.

B.-C. Gao, A. F. H. Goetz, W. J. Wiscombe, “Cirrus cloud detection from airborne imaging spectrometer data using 1.38 micron water vapor band,” Geophys. Res. Lett. 20, 301–304 (1993).
[CrossRef]

Goetz, A. F. H.

B.-C. Gao, A. F. H. Goetz, W. J. Wiscombe, “Cirrus cloud detection from airborne imaging spectrometer data using 1.38 micron water vapor band,” Geophys. Res. Lett. 20, 301–304 (1993).
[CrossRef]

Grassl, H.

J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical Study,” J. Appl. Meteorol. 30, 1245–1259 (1991).
[CrossRef]

Han, Q.

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994).
[CrossRef]

Harris, G. P.

D. L. B. Jupp, J. T. O. Kirk, G. P. Harris, “Detection, identification and mapping of cyanobacteria using remote sensing to measure the optical quality of turbid inland waters,” Aust. J. Mar. Freshwater Res. 45, 801–828 (1994).
[CrossRef]

Jayaweera, K.

Jeffrey, S. W.

S. W. Jeffrey, “Algal pigment system,” in Primary Productivity in the Sea, P. G. Falkowsky, ed. (Plenum, New York, 1980), pp. 33–58.
[CrossRef]

Jupp, D. L. B.

D. L. B. Jupp, J. T. O. Kirk, G. P. Harris, “Detection, identification and mapping of cyanobacteria using remote sensing to measure the optical quality of turbid inland waters,” Aust. J. Mar. Freshwater Res. 45, 801–828 (1994).
[CrossRef]

Kaufman, Y. J.

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

King, M. D.

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

T. Nakajima, M. D. King, “Asymptotic theory for optically thick layers: application to the discrete ordinates method,” Appl. Opt. 31, 7669–7683 (1992).
[CrossRef] [PubMed]

Kirk, J. T. O.

D. L. B. Jupp, J. T. O. Kirk, G. P. Harris, “Detection, identification and mapping of cyanobacteria using remote sensing to measure the optical quality of turbid inland waters,” Aust. J. Mar. Freshwater Res. 45, 801–828 (1994).
[CrossRef]

Kishino, M.

M. Kishino, S. Sugihara, N. Okami, “Influence of fluorescence of chlorophyll a on underwater upward irradiance spectrum,” La mer 22, 224–232 (1984).

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Lacis, A. A.

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994).
[CrossRef]

Letelier, R. M.

R. M. Letelier, M. R. Abott, “An analysis of chlorophyll fluorescence algorithm for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sensing Environ. 58, 215–223 (1996).
[CrossRef]

Manzel, W. P.

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

Mörl, P.

J. Fischer, W. Cordes, A. Schmitz-Peiffer, W. Renger, P. Mörl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: Measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[CrossRef]

Nakajima, T.

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

T. Nakajima, M. D. King, “Asymptotic theory for optically thick layers: application to the discrete ordinates method,” Appl. Opt. 31, 7669–7683 (1992).
[CrossRef] [PubMed]

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

Nakajima, T. Y.

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

Okami, N.

M. Kishino, S. Sugihara, N. Okami, “Influence of fluorescence of chlorophyll a on underwater upward irradiance spectrum,” La mer 22, 224–232 (1984).

Renger, W.

J. Fischer, W. Cordes, A. Schmitz-Peiffer, W. Renger, P. Mörl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: Measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[CrossRef]

Rossow, W. B.

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994).
[CrossRef]

Schmitz-Peiffer, A.

J. Fischer, W. Cordes, A. Schmitz-Peiffer, W. Renger, P. Mörl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: Measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[CrossRef]

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Shiobara, M.

S. Asano, M. Shiobara, A. Uchiyama, “Estimation of cloud physical parameters from airborne solar spectral reflectance measurements for stratocumulus clouds,” J. Atmos. Sci. 52, 3556–3576 (1995).
[CrossRef]

Stamnes, K.

Sugihara, S.

M. Kishino, S. Sugihara, N. Okami, “Influence of fluorescence of chlorophyll a on underwater upward irradiance spectrum,” La mer 22, 224–232 (1984).

Tanaka, M.

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

Tanré, D.

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

Tsay, S.-C.

Uchiyama, A.

S. Asano, M. Shiobara, A. Uchiyama, “Estimation of cloud physical parameters from airborne solar spectral reflectance measurements for stratocumulus clouds,” J. Atmos. Sci. 52, 3556–3576 (1995).
[CrossRef]

Wark, D. Q.

G. Yamamoto, D. Q. Wark, “Discussion of the Letter by R. A. Hanel, determination of cloud altitude from a satellite,” J. Geophys. Res. 66, 3596 (1961).
[CrossRef]

Wiscombe, W.

Wiscombe, W. J.

B.-C. Gao, A. F. H. Goetz, W. J. Wiscombe, “Cirrus cloud detection from airborne imaging spectrometer data using 1.38 micron water vapor band,” Geophys. Res. Lett. 20, 301–304 (1993).
[CrossRef]

Yamamoto, G.

G. Yamamoto, D. Q. Wark, “Discussion of the Letter by R. A. Hanel, determination of cloud altitude from a satellite,” J. Geophys. Res. 66, 3596 (1961).
[CrossRef]

Appl. Opt.

Aust. J. Mar. Freshwater Res.

D. L. B. Jupp, J. T. O. Kirk, G. P. Harris, “Detection, identification and mapping of cyanobacteria using remote sensing to measure the optical quality of turbid inland waters,” Aust. J. Mar. Freshwater Res. 45, 801–828 (1994).
[CrossRef]

Geophys. Res. Lett.

B.-C. Gao, A. F. H. Goetz, W. J. Wiscombe, “Cirrus cloud detection from airborne imaging spectrometer data using 1.38 micron water vapor band,” Geophys. Res. Lett. 20, 301–304 (1993).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

J. Appl. Meteorol.

J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical Study,” J. Appl. Meteorol. 30, 1245–1259 (1991).
[CrossRef]

J. Fischer, W. Cordes, A. Schmitz-Peiffer, W. Renger, P. Mörl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: Measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[CrossRef]

J. Atmos. Sci.

S. Asano, M. Shiobara, A. Uchiyama, “Estimation of cloud physical parameters from airborne solar spectral reflectance measurements for stratocumulus clouds,” J. Atmos. Sci. 52, 3556–3576 (1995).
[CrossRef]

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

J. Climate

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994).
[CrossRef]

J. Geophys. Res.

G. Yamamoto, D. Q. Wark, “Discussion of the Letter by R. A. Hanel, determination of cloud altitude from a satellite,” J. Geophys. Res. 66, 3596 (1961).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

La mer

M. Kishino, S. Sugihara, N. Okami, “Influence of fluorescence of chlorophyll a on underwater upward irradiance spectrum,” La mer 22, 224–232 (1984).

Remote Sensing Environ.

R. M. Letelier, M. R. Abott, “An analysis of chlorophyll fluorescence algorithm for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sensing Environ. 58, 215–223 (1996).
[CrossRef]

Other

S. W. Jeffrey, “Algal pigment system,” in Primary Productivity in the Sea, P. G. Falkowsky, ed. (Plenum, New York, 1980), pp. 33–58.
[CrossRef]

K. Arai, “A method for surface temperature retrieval with ASTER/TIR,” in Proceedings of 1994 International Geoscience and Remote Sensing Symposium, T. I. Stain, ed. (Institute of Electrical and Electronics Engineers, New Jersey, 1994), p. 199.
[CrossRef]

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Illustration of the ADEOS-II satellite and its five sensors: Advanced Microwave Scanning Radiometer (AMSR), Global Imager (GLI), SeaWinds, polarization and directionality of the Earth’s reflectances (POLDER), and Improved Limb Atmospheric Spectrometer II (ILAS-II). The satellite main body has dimensions of 5 m × 4 m × 4 m with a solar array paddle (PDL) of 3 m × 24 m. The total weight is 3680 kg, and its lifetime is three years. Other bus subunits are the communications and data handling subsystem (C&DH), interorbital communication subsystem (IOCS), mission data processing subsystem (MDP), direct transmission for local users (DTL) and DTL antenna (DTL-ANT), direct transmission subsystem (DT), cube corner reflector (CCR), data collecting system (DCS) and antenna (DCS-ANT), and Earth sensor assembly (ESA).

Fig. 2
Fig. 2

Illustration of the GLI system components. The two-sided scanning mirror is set along the x axis and rotates at 16.7 revolutions/min. The mirror tilts ±20° toward the direction of the track to avoid sea-reflected Sun glitter over middle-latitude areas. With the scanning mirror one can observe not only the Earth but also the solar diffuser or internal lamp, the blackbody, and deep space at the calibration source.

Fig. 3
Fig. 3

GLI block diagram. The observed light beam is divided by dichroic filters into five beams that project on different focal planes (below 0.6 μm, 0.6–1 μm, 1–1.5 μm, 1.5–3 μm, and above 3 μm). Each split beam is received by a number of channels at each focal plane after it passes through bandpass filters.

Fig. 4
Fig. 4

Illustration of the GLI SS structure. The GLI SS is a complex of software tools for satellite orbit simulation, radiative transfer, and optical modeling of the atmosphere.

Fig. 5
Fig. 5

Response function of each channel and atmospheric transmittance for the 1976 U.S. Standard model [the total of water vapor (H2O) and other molecules (CO2+)]. Also shown is the relative water vapor effect in simulated measured radiances (Relative difference of simulated measured radiance at the center wavelength with 400% and 10% water vapor loadings for the 1976 U.S. Standard model.) Various center wavelengths were used: (a) 0.625-μm, (b) 0.666-μm, (c) 0.680-μm, (d) 0.710-μm, (e) 0.749-μm channels.

Fig. 6
Fig. 6

Relative differences of simulated measured radiance for three types of comparison: (a) between case 3 and case 1 to study the sensitivity to cloud top altitude, (b) between case 2 and case 3, (c) between case 2 and case 1 to focus the sensitivity on the cloud geometric thickness.

Fig. 7
Fig. 7

Response functions with bandwidths of Δλ = 5, 10, 20, 30, and 40 nm for a center wavelength of λ0 = 0.763 μm. Atmospheric transmittances (the total) for the 1976 U.S. Standard model.

Fig. 8
Fig. 8

Same as Fig. 7 but for the 3.7-μm atmospheric window band. Various center wavelengths were used: λ0 = 3.6, 3.7, and 3.8 μm with a bandwidth of Δλ = 0.33 μm.

Fig. 9
Fig. 9

Difference between model surface temperature and simulated measured brightness temperatures (Tg-Tbb): (a) results without dispersion and (b) results with a bandwidth of Δλ = 0.33 μm.

Fig. 10
Fig. 10

Difference between model surface temperature and simulated measured brightness temperatures (Tg-Tbb) obtained with the tropical atmospheric model as a function of bandwidth Δλ for each center wavelength of λ0 = 3.6, 3.65, 3.7, 3.75, 3.8, 3.85, 3.9, and 3.95 μm.

Fig. 11
Fig. 11

Weighting functions for center wavelengths of λ0 = 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, and 4.1 μm. The weighting function is defined by the perturbation in the brightness temperature that is due to a temperature change of +10 K at each altitude.

Fig. 12
Fig. 12

Sensitivity of simulated measured radiance for the effective particle radius r e .

Fig. 13
Fig. 13

Weighting functions with center wavelengths at λ0 = 6.7, 7.0, 7.3, 7.5, 8.3, 8.6, 10.8, and 12.0 μm. The weighting function is defined by the perturbation in the brightness temperature with a 10% increase in water vapor amount at each altitude. The weighting functions are negative because the 10% increase in water vapor leads to a reduction in outgoing radiance.

Tables (4)

Tables Icon

Table 1 Summary of Final Specification of the GLI Channels and Primary Targets

Tables Icon

Table 2 Summary of the Geometric Cloud Conditions for the 0.763-μm Channel

Tables Icon

Table 3 Relative Difference between Cloudy Radiance and Clear Sky Radiance

Tables Icon

Table 4 Maximum values for the 1976 U.S. Standard Atmospheric Modela

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ λ = exp - λ - λ 0 β α ,
r e     0   r 3 n r d r 0   r 2 n r d r ,
n r = N 2 π σ exp - ln   r - ln   r 0 2 σ 2 ,
weighting function   =   Tbb + 10   K   temperature -   Tbb normal temperature ,

Metrics