Abstract

We measured the attenuation coefficient of the National Oceanic and Atmospheric Administration lidar from a ship in the Southern California Bight in September 1995. The region from approximately 5 to 30 m in depth was covered. The laser was linearly polarized, and the receiver was operated with the same polarization and the orthogonal polarization. The measured values were between 0.08 and 0.12 m-1 and were highly correlated with in situ measurements of the beam attenuation coefficient. Fluctuations of the lidar signal were found to be induced primarily by surface waves whose wavelengths are approximately three times the lidar spot size at the surface.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Experimental evaluation of an airborne depth-sounding lidar,” Opt. Eng. 32, 1307–1321 (1993).
    [CrossRef]
  2. K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Airborne laser depth sounding: a system aspects and performance,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 392–412 (1994).
    [CrossRef]
  3. M. F. Penny, B. Billard, R. H. Abbot, “LADS—The Australian laser airborne depth sounder,” Int. J. Remote Sensing 10, 1463–1479 (1989).
    [CrossRef]
  4. G. C. Guenther, P. E. LaRocque, W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 422–430 (1994).
    [CrossRef]
  5. R. N. Keeler, B. L. Ulich, “Some aspects of wide beam imaging lidar performance,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 480–500 (1994).
    [CrossRef]
  6. G. R. Fournier, D. Bonnier, J. L. Forand, “Underwater laser imaging system with large field of view,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 413–421 (1994).
    [CrossRef]
  7. F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988).
    [CrossRef] [PubMed]
  8. V. I. Feigels, Yu. I. Kopilevich, “Applicability of lidar remote sensing methods for vertical structure investigation of ocean optical properties distribution,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 449–457 (1994).
    [CrossRef]
  9. J. L. Squire, H. Krumboltz, “Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques,” Mar. Technol. Soc. J. 15, 27–31 (1981).
  10. J. H. Churnside, V. V. Tatarskii, J. W. Wilson, “Lidar profiles of fish schools,” Appl. Opt. 36, 6011–6020 (1997).
    [CrossRef] [PubMed]
  11. R. C. Smith, O. B. Brown, F. E. Hoge, K. S. Baker, R. H. Evans, R. N. Swift, W. E. Esaias, “Multiplatform sampling (ship, aircraft, and satellite) of a Gulf Stream warm core ring,” Appl. Opt. 26, 2068–2081 (1987).
    [CrossRef] [PubMed]
  12. J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft, and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
    [CrossRef]
  13. R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurement of hydrographic fronts in the German Bight and in the Northern Adriatic Sea,” Int. J. Remote Sensing 14, 823–848 (1993).
    [CrossRef]
  14. F. E. Hoge, R. N. Swift, “Oil film thickness measurement using airborne laser-induced water Raman backscatter,” Appl. Opt. 19, 3269–3281 (1980).
    [CrossRef] [PubMed]
  15. H. R. Gordon, “Interpretation of airborne oceanic lidar: effects of multiple scattering,” Appl. Opt. 21, 2996–3001 (1982).
    [CrossRef] [PubMed]
  16. K. J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr. 37, 501–509 (1992).
    [CrossRef]
  17. H. R. Gordon, O. T. Brown, M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
    [CrossRef] [PubMed]
  18. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  19. J. W. McLean, “Modeling of ocean wave effects for LIDAR remote sensing,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 480–491 (1990).
    [CrossRef]
  20. R. L. Snyder, J. Dera, “Wave induced light field fluctuations in the sea,” J. Opt. Soc. Am. 60, 1072–1079 (1970).
    [CrossRef]
  21. A. B. Fraser, R. E. Walker, F. C. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Oceanic Eng. OE-5, 195–198 (1980).
    [CrossRef]
  22. B. Kinsman, Wind Waves (Dover, New York, 1984), p. 172.
  23. O. I. Prokopov, V. P. Nikolayev, A. A. Zhil’tsov, N. M. Nesterenko, “Some results of a study of light-fluctuations in the sea from Chernomor underwater laboratory,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 737–740 (1974).

1997 (1)

1993 (2)

R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurement of hydrographic fronts in the German Bight and in the Northern Adriatic Sea,” Int. J. Remote Sensing 14, 823–848 (1993).
[CrossRef]

K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Experimental evaluation of an airborne depth-sounding lidar,” Opt. Eng. 32, 1307–1321 (1993).
[CrossRef]

1992 (1)

K. J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr. 37, 501–509 (1992).
[CrossRef]

1989 (1)

M. F. Penny, B. Billard, R. H. Abbot, “LADS—The Australian laser airborne depth sounder,” Int. J. Remote Sensing 10, 1463–1479 (1989).
[CrossRef]

1988 (2)

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft, and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[CrossRef]

F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988).
[CrossRef] [PubMed]

1987 (1)

1982 (1)

1981 (2)

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

J. L. Squire, H. Krumboltz, “Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques,” Mar. Technol. Soc. J. 15, 27–31 (1981).

1980 (2)

A. B. Fraser, R. E. Walker, F. C. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Oceanic Eng. OE-5, 195–198 (1980).
[CrossRef]

F. E. Hoge, R. N. Swift, “Oil film thickness measurement using airborne laser-induced water Raman backscatter,” Appl. Opt. 19, 3269–3281 (1980).
[CrossRef] [PubMed]

1975 (1)

1974 (1)

O. I. Prokopov, V. P. Nikolayev, A. A. Zhil’tsov, N. M. Nesterenko, “Some results of a study of light-fluctuations in the sea from Chernomor underwater laboratory,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 737–740 (1974).

1970 (1)

Abbot, R. H.

M. F. Penny, B. Billard, R. H. Abbot, “LADS—The Australian laser airborne depth sounder,” Int. J. Remote Sensing 10, 1463–1479 (1989).
[CrossRef]

Baker, K. S.

Berry, R. E.

Billard, B.

M. F. Penny, B. Billard, R. H. Abbot, “LADS—The Australian laser airborne depth sounder,” Int. J. Remote Sensing 10, 1463–1479 (1989).
[CrossRef]

Bonnier, D.

G. R. Fournier, D. Bonnier, J. L. Forand, “Underwater laser imaging system with large field of view,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 413–421 (1994).
[CrossRef]

Brown, O. B.

Brown, O. T.

Buntzen, R. R.

Churnside, J. H.

Dera, J.

Diebel, D.

R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurement of hydrographic fronts in the German Bight and in the Northern Adriatic Sea,” Int. J. Remote Sensing 14, 823–848 (1993).
[CrossRef]

Esaias, W. E.

Evans, R. H.

Feigels, V. I.

V. I. Feigels, Yu. I. Kopilevich, “Applicability of lidar remote sensing methods for vertical structure investigation of ocean optical properties distribution,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 449–457 (1994).
[CrossRef]

Forand, J. L.

G. R. Fournier, D. Bonnier, J. L. Forand, “Underwater laser imaging system with large field of view,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 413–421 (1994).
[CrossRef]

Fournier, G. R.

G. R. Fournier, D. Bonnier, J. L. Forand, “Underwater laser imaging system with large field of view,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 413–421 (1994).
[CrossRef]

Fraser, A. B.

A. B. Fraser, R. E. Walker, F. C. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Oceanic Eng. OE-5, 195–198 (1980).
[CrossRef]

Gilbert, G. D.

Gordon, H. R.

Guenther, G. C.

G. C. Guenther, P. E. LaRocque, W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 422–430 (1994).
[CrossRef]

Hengstermann, T.

R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurement of hydrographic fronts in the German Bight and in the Northern Adriatic Sea,” Int. J. Remote Sensing 14, 823–848 (1993).
[CrossRef]

Hoge, F. E.

Jacobs, M. M.

Jurgens, F. C.

A. B. Fraser, R. E. Walker, F. C. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Oceanic Eng. OE-5, 195–198 (1980).
[CrossRef]

Karlsson, U. C. M.

K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Experimental evaluation of an airborne depth-sounding lidar,” Opt. Eng. 32, 1307–1321 (1993).
[CrossRef]

K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Airborne laser depth sounding: a system aspects and performance,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 392–412 (1994).
[CrossRef]

Keeler, R. N.

R. N. Keeler, B. L. Ulich, “Some aspects of wide beam imaging lidar performance,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 480–500 (1994).
[CrossRef]

Kinsman, B.

B. Kinsman, Wind Waves (Dover, New York, 1984), p. 172.

Kopilevich, Yu. I.

V. I. Feigels, Yu. I. Kopilevich, “Applicability of lidar remote sensing methods for vertical structure investigation of ocean optical properties distribution,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 449–457 (1994).
[CrossRef]

Koppari, K. R.

K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Experimental evaluation of an airborne depth-sounding lidar,” Opt. Eng. 32, 1307–1321 (1993).
[CrossRef]

K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Airborne laser depth sounding: a system aspects and performance,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 392–412 (1994).
[CrossRef]

Krabill, W. B.

Krumboltz, H.

J. L. Squire, H. Krumboltz, “Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques,” Mar. Technol. Soc. J. 15, 27–31 (1981).

LaRocque, P. E.

G. C. Guenther, P. E. LaRocque, W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 422–430 (1994).
[CrossRef]

Lillycrop, W. J.

G. C. Guenther, P. E. LaRocque, W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 422–430 (1994).
[CrossRef]

McLean, J. W.

J. W. McLean, “Modeling of ocean wave effects for LIDAR remote sensing,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 480–491 (1990).
[CrossRef]

Nesterenko, N. M.

O. I. Prokopov, V. P. Nikolayev, A. A. Zhil’tsov, N. M. Nesterenko, “Some results of a study of light-fluctuations in the sea from Chernomor underwater laboratory,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 737–740 (1974).

Nikolayev, V. P.

O. I. Prokopov, V. P. Nikolayev, A. A. Zhil’tsov, N. M. Nesterenko, “Some results of a study of light-fluctuations in the sea from Chernomor underwater laboratory,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 737–740 (1974).

Penny, M. F.

M. F. Penny, B. Billard, R. H. Abbot, “LADS—The Australian laser airborne depth sounder,” Int. J. Remote Sensing 10, 1463–1479 (1989).
[CrossRef]

Pietrafesa, L. J.

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft, and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[CrossRef]

Prokopov, O. I.

O. I. Prokopov, V. P. Nikolayev, A. A. Zhil’tsov, N. M. Nesterenko, “Some results of a study of light-fluctuations in the sea from Chernomor underwater laboratory,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 737–740 (1974).

Reuter, R.

R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurement of hydrographic fronts in the German Bight and in the Northern Adriatic Sea,” Int. J. Remote Sensing 14, 823–848 (1993).
[CrossRef]

Smith, R. C.

Snyder, R. L.

Squire, J. L.

J. L. Squire, H. Krumboltz, “Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques,” Mar. Technol. Soc. J. 15, 27–31 (1981).

Steinvall, K. O.

K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Experimental evaluation of an airborne depth-sounding lidar,” Opt. Eng. 32, 1307–1321 (1993).
[CrossRef]

K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Airborne laser depth sounding: a system aspects and performance,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 392–412 (1994).
[CrossRef]

Swift, R. N.

Tatarskii, V. V.

Ulich, B. L.

R. N. Keeler, B. L. Ulich, “Some aspects of wide beam imaging lidar performance,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 480–500 (1994).
[CrossRef]

Voss, K. J.

K. J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr. 37, 501–509 (1992).
[CrossRef]

Walker, R. E.

A. B. Fraser, R. E. Walker, F. C. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Oceanic Eng. OE-5, 195–198 (1980).
[CrossRef]

Walsh, J. J.

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft, and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[CrossRef]

Whitledge, T. E.

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft, and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[CrossRef]

Wilson, J. W.

Wirick, C. D.

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft, and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[CrossRef]

Wright, C. W.

Yungel, J. K.

Zhil’tsov, A. A.

O. I. Prokopov, V. P. Nikolayev, A. A. Zhil’tsov, N. M. Nesterenko, “Some results of a study of light-fluctuations in the sea from Chernomor underwater laboratory,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 737–740 (1974).

Appl. Opt. (7)

Cont. Shelf Res. (1)

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft, and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[CrossRef]

IEEE J. Oceanic Eng. (1)

A. B. Fraser, R. E. Walker, F. C. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Oceanic Eng. OE-5, 195–198 (1980).
[CrossRef]

Int. J. Remote Sensing (2)

R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurement of hydrographic fronts in the German Bight and in the Northern Adriatic Sea,” Int. J. Remote Sensing 14, 823–848 (1993).
[CrossRef]

M. F. Penny, B. Billard, R. H. Abbot, “LADS—The Australian laser airborne depth sounder,” Int. J. Remote Sensing 10, 1463–1479 (1989).
[CrossRef]

Izv. Acad. Sci. USSR Atmos. Oceanic Phys. (1)

O. I. Prokopov, V. P. Nikolayev, A. A. Zhil’tsov, N. M. Nesterenko, “Some results of a study of light-fluctuations in the sea from Chernomor underwater laboratory,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 737–740 (1974).

J. Opt. Soc. Am. (1)

Limnol. Oceanogr. (1)

K. J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr. 37, 501–509 (1992).
[CrossRef]

Mar. Technol. Soc. J. (1)

J. L. Squire, H. Krumboltz, “Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques,” Mar. Technol. Soc. J. 15, 27–31 (1981).

Opt. Eng. (1)

K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Experimental evaluation of an airborne depth-sounding lidar,” Opt. Eng. 32, 1307–1321 (1993).
[CrossRef]

Other (7)

K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Airborne laser depth sounding: a system aspects and performance,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 392–412 (1994).
[CrossRef]

V. I. Feigels, Yu. I. Kopilevich, “Applicability of lidar remote sensing methods for vertical structure investigation of ocean optical properties distribution,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 449–457 (1994).
[CrossRef]

G. C. Guenther, P. E. LaRocque, W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 422–430 (1994).
[CrossRef]

R. N. Keeler, B. L. Ulich, “Some aspects of wide beam imaging lidar performance,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 480–500 (1994).
[CrossRef]

G. R. Fournier, D. Bonnier, J. L. Forand, “Underwater laser imaging system with large field of view,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 413–421 (1994).
[CrossRef]

J. W. McLean, “Modeling of ocean wave effects for LIDAR remote sensing,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 480–491 (1990).
[CrossRef]

B. Kinsman, Wind Waves (Dover, New York, 1984), p. 172.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Map showing the locations of the ten measurement stations.

Fig. 2
Fig. 2

Typical lidar signal S as a function of depth d with detector triggered at 5 m. Peak at approximately 12 m is an artifact of the detector trigger.

Fig. 3
Fig. 3

Depth (d) profiles of temperature T and salinity Σ measured at station 7.

Fig. 4
Fig. 4

Depth (d) profiles of beam attenuation c and diffuse attenuation K with a solar-angle correction factor.

Fig. 5
Fig. 5

Lidar signal amplitude C as a function of beam attenuation c measured at a depth of 20 m. The points are labeled by station number; stations in the first transect are denoted by filled circles connected by a solid line, and points in the second transect are denoted by filled squares connected by a short dashed line. The long dashed line is a linear regression between the two quantities.

Fig. 6
Fig. 6

Polarization P as a function of estimated scattering coefficient b. The points are labeled by station number; stations in the first transect are denoted by filled circles connected by a solid line, and points in the second transect are denoted by filled squares connected by a dashed line.

Fig. 7
Fig. 7

Attenuation coefficient of the copolarized lidar return αco as a function of the beam attenuation coefficient c measured at a depth of 20 m. The points are labeled by station number; stations in the first transect are denoted by filled circles connected by a solid line, and points in the second transect are denoted by filled squares connected by a short dashed line. The long dashed line is a linear regression between the two quantities.

Fig. 8
Fig. 8

Correlation coefficient ρ of the lidar return at a depth of 20 m with the return at depth d for the data of station 7.

Fig. 9
Fig. 9

Normalized lidar signal variance σ2 as a function of depth d for station 7.

Fig. 10
Fig. 10

Temporal autocorrelation coefficient ρ as a function of time delay τ for the lidar return from a depth of 20 m at station 7. The filled circles represent the measured values at integer multiples of the 0.1-s pulse spacing. The solid curve is Eq. (7).

Fig. 11
Fig. 11

Copolarized lidar attenuation coefficient αco as a function of the lidar amplitude C for half of the data (one file) of station 9. The open circles represent the data, and the solid line is Eq. (8).

Tables (2)

Tables Icon

Table 1 Locations and Times of Measurement Stations

Tables Icon

Table 2 Lidar Transmitter and Receiver Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S d = C   exp - 2 α d d + nh 2 ,
c 532   nm = 1.18 c 660   nm - 0.419 .
C = - 19,800 c + 5370 ,
P = C co - C x C co + C x ,
α = 0.217 c + 0.0671 .
α = 0.406 K + 0.0709 ,
ρ = exp - 2.23 τ cos 9.13 τ ,
α co = 5.25 × 10 - 3 ln C - 2.89 × 10 - 3 .

Metrics