Abstract

Basic real-time programmable image-processing operations are accomplished by use of acousto-optic (AO) cells. Instead of frequency-plane filters, the AO cells are placed directly behind the object. The one-dimensional edge-enhancement results with one AO cell can be improved by use of two AO cells that are placed in tandem with contrapropagating sound. The dominant second-derivative operation obtained from the transfer function of the undiffracted order works like a one-dimensional Laplacian operator that enables improved edge enhancement.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, New York, 1993).
  2. M. A. Stedham, “Spacecraft attitude determination via the panoramic annular lens attitude determination system (PALADS),” Masters thesis (University of Alabama in Huntsville, Huntsville, Al., 1994).
  3. T. Y. Young, K.-S. Fu, Handbook of Pattern Recognition and Image Processing (Academic, New York, 1986).
  4. P. Das, Acousto-optic Signal Processing: Fundamentals and Applications (Artech House, Norwood, Mass., 1991).
  5. R. Whitman, A. Korpel, S. Lotsoff, “Application of acoustic Bragg diffraction to optical processing techniques,” in Proceedings of the Symposium on Modern Optics (Wiley, New York, 1967), pp. 243–246.
  6. M. King, W. R. Bennett, L. B. Lambert, M. Arm, “Real-time electrooptical signal processors with coherent detection,” Appl. Opt. 6, 1367–1375 (1967).
    [CrossRef] [PubMed]
  7. J. N. Mait, D. W. Prather, R. A. Athale, “Acousto-optic processing with electronic feedback for morphological filtering,” Appl. Opt. 31, 5688–5699 (1992).
    [CrossRef] [PubMed]
  8. V. I. Balakshy, “Scanning of images,” Sov. J. Quantum Electron. 6, 965–971 (1979).
  9. P. P. Banerjee, D. Cao, T.-C. Poon, “Basic image-processing operations by use of acousto-optics,” Appl. Opt. 36, 3086–3089 (1997).
    [CrossRef] [PubMed]
  10. J. Xia, D. B. Dunn, T.-C. Poon, P. P. Banerjee, “Image edge enhancement by Bragg diffraction,” Opt. Commun. 128, 1–7 (1996).
    [CrossRef]
  11. S. Case, “Fourier processing in the object plane,” Opt. Lett. 4, 286–288 (1979).
    [CrossRef]
  12. G. Indebetouw, “Tunable spatial filtering with a Fabry-Perot etalon,” Appl. Opt. 19, 761–764 (1980).
    [CrossRef] [PubMed]
  13. J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
    [CrossRef]
  14. M. R. Chatterjee, T.-C. Poon, D. N. Sitter, “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).
  15. A. Korpel, P. P. Banerjee, C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
    [CrossRef]
  16. P. P. Banerjee, C.-W. Tarn, “A Fourier transform approach to acousto-optic interactions in the presence of propagational diffraction,” Acustica 74, 181–191 (1991).

1997 (2)

P. P. Banerjee, D. Cao, T.-C. Poon, “Basic image-processing operations by use of acousto-optics,” Appl. Opt. 36, 3086–3089 (1997).
[CrossRef] [PubMed]

J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

1996 (1)

J. Xia, D. B. Dunn, T.-C. Poon, P. P. Banerjee, “Image edge enhancement by Bragg diffraction,” Opt. Commun. 128, 1–7 (1996).
[CrossRef]

1993 (1)

A. Korpel, P. P. Banerjee, C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
[CrossRef]

1992 (1)

1991 (1)

P. P. Banerjee, C.-W. Tarn, “A Fourier transform approach to acousto-optic interactions in the presence of propagational diffraction,” Acustica 74, 181–191 (1991).

1990 (1)

M. R. Chatterjee, T.-C. Poon, D. N. Sitter, “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).

1980 (1)

1979 (2)

V. I. Balakshy, “Scanning of images,” Sov. J. Quantum Electron. 6, 965–971 (1979).

S. Case, “Fourier processing in the object plane,” Opt. Lett. 4, 286–288 (1979).
[CrossRef]

1967 (1)

Arm, M.

Athale, R. A.

Balakshy, V. I.

V. I. Balakshy, “Scanning of images,” Sov. J. Quantum Electron. 6, 965–971 (1979).

Banerjee, P. P.

P. P. Banerjee, D. Cao, T.-C. Poon, “Basic image-processing operations by use of acousto-optics,” Appl. Opt. 36, 3086–3089 (1997).
[CrossRef] [PubMed]

J. Xia, D. B. Dunn, T.-C. Poon, P. P. Banerjee, “Image edge enhancement by Bragg diffraction,” Opt. Commun. 128, 1–7 (1996).
[CrossRef]

A. Korpel, P. P. Banerjee, C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
[CrossRef]

P. P. Banerjee, C.-W. Tarn, “A Fourier transform approach to acousto-optic interactions in the presence of propagational diffraction,” Acustica 74, 181–191 (1991).

Bennett, W. R.

Cao, D.

Case, S.

Caulfield, H. J.

J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Chatterjee, M. R.

M. R. Chatterjee, T.-C. Poon, D. N. Sitter, “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).

Das, P.

P. Das, Acousto-optic Signal Processing: Fundamentals and Applications (Artech House, Norwood, Mass., 1991).

Dunn, D. B.

J. Xia, D. B. Dunn, T.-C. Poon, P. P. Banerjee, “Image edge enhancement by Bragg diffraction,” Opt. Commun. 128, 1–7 (1996).
[CrossRef]

Fournier, J. M.

J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Fu, K.-S.

T. Y. Young, K.-S. Fu, Handbook of Pattern Recognition and Image Processing (Academic, New York, 1986).

Gonzalez, R. C.

R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, New York, 1993).

Hemmer, P.

J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Indebetouw, G.

King, M.

Korpel, A.

A. Korpel, P. P. Banerjee, C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
[CrossRef]

R. Whitman, A. Korpel, S. Lotsoff, “Application of acoustic Bragg diffraction to optical processing techniques,” in Proceedings of the Symposium on Modern Optics (Wiley, New York, 1967), pp. 243–246.

Korzinin, Y. L.

J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Lambert, L. B.

Lotsoff, S.

R. Whitman, A. Korpel, S. Lotsoff, “Application of acoustic Bragg diffraction to optical processing techniques,” in Proceedings of the Symposium on Modern Optics (Wiley, New York, 1967), pp. 243–246.

Ludman, J. E.

J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Mait, J. N.

Poon, T.-C.

P. P. Banerjee, D. Cao, T.-C. Poon, “Basic image-processing operations by use of acousto-optics,” Appl. Opt. 36, 3086–3089 (1997).
[CrossRef] [PubMed]

J. Xia, D. B. Dunn, T.-C. Poon, P. P. Banerjee, “Image edge enhancement by Bragg diffraction,” Opt. Commun. 128, 1–7 (1996).
[CrossRef]

M. R. Chatterjee, T.-C. Poon, D. N. Sitter, “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).

Prather, D. W.

Reinhand, N. O.

J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Riccobona, J. R.

J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Semenova, I. V.

J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Shahviar, S. M.

J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Sitter, D. N.

M. R. Chatterjee, T.-C. Poon, D. N. Sitter, “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).

Stedham, M. A.

M. A. Stedham, “Spacecraft attitude determination via the panoramic annular lens attitude determination system (PALADS),” Masters thesis (University of Alabama in Huntsville, Huntsville, Al., 1994).

Tarn, C.-W.

A. Korpel, P. P. Banerjee, C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
[CrossRef]

P. P. Banerjee, C.-W. Tarn, “A Fourier transform approach to acousto-optic interactions in the presence of propagational diffraction,” Acustica 74, 181–191 (1991).

Whitman, R.

R. Whitman, A. Korpel, S. Lotsoff, “Application of acoustic Bragg diffraction to optical processing techniques,” in Proceedings of the Symposium on Modern Optics (Wiley, New York, 1967), pp. 243–246.

Woods, R. E.

R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, New York, 1993).

Xia, J.

J. Xia, D. B. Dunn, T.-C. Poon, P. P. Banerjee, “Image edge enhancement by Bragg diffraction,” Opt. Commun. 128, 1–7 (1996).
[CrossRef]

Young, T. Y.

T. Y. Young, K.-S. Fu, Handbook of Pattern Recognition and Image Processing (Academic, New York, 1986).

Acustica (2)

M. R. Chatterjee, T.-C. Poon, D. N. Sitter, “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).

P. P. Banerjee, C.-W. Tarn, “A Fourier transform approach to acousto-optic interactions in the presence of propagational diffraction,” Acustica 74, 181–191 (1991).

Appl. Opt. (4)

Opt. Commun. (2)

J. Xia, D. B. Dunn, T.-C. Poon, P. P. Banerjee, “Image edge enhancement by Bragg diffraction,” Opt. Commun. 128, 1–7 (1996).
[CrossRef]

A. Korpel, P. P. Banerjee, C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
[CrossRef]

Opt. Eng. (1)

J. E. Ludman, J. R. Riccobona, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahviar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

V. I. Balakshy, “Scanning of images,” Sov. J. Quantum Electron. 6, 965–971 (1979).

Other (5)

R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, New York, 1993).

M. A. Stedham, “Spacecraft attitude determination via the panoramic annular lens attitude determination system (PALADS),” Masters thesis (University of Alabama in Huntsville, Huntsville, Al., 1994).

T. Y. Young, K.-S. Fu, Handbook of Pattern Recognition and Image Processing (Academic, New York, 1986).

P. Das, Acousto-optic Signal Processing: Fundamentals and Applications (Artech House, Norwood, Mass., 1991).

R. Whitman, A. Korpel, S. Lotsoff, “Application of acoustic Bragg diffraction to optical processing techniques,” in Proceedings of the Symposium on Modern Optics (Wiley, New York, 1967), pp. 243–246.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of AO diffraction at ±ϕ B incidences.

Fig. 2
Fig. 2

Numerical simulation results demonstrated in three-dimensional (3-D) intensity-distribution format by use of one AO cell. The square input object has 1-mm sides, unit intensity, and Q ≈ 28: (a) Asymmetric edges visible at α = 0.85π. (b) For α = 0.6π, one of the two vertical edges can hardly be distinguished.

Fig. 3
Fig. 3

Schematic diagrams illustrating the second-derivative effect: (a) Square input object field distribution. (b) Optical field after the first derivative with a zero constant term. (c) Optical field after the second derivative with a zero constant term. (d) Optical intensity after the second derivative with a zero constant term showing the well-defined double peaks near each edge. (e) Optical intensity after the second derivative but with a small nonzero constant. (f) Optical intensity after the second derivative but with a large nonzero constant.

Fig. 4
Fig. 4

Experimental setup for 1-D edge enhancement by use of two cascaded AO cells with contrapropagating sound.

Fig. 5
Fig. 5

Schematic diagram showing how to overcome overlap diffraction from slightly different sound frequencies for the two cascaded AO cells: ϕ B1 = λ/2Λ1, ϕ B2 = λ/2Λ2, and Δϕ B = ϕ B 2 - ϕ B 1 .

Fig. 6
Fig. 6

Experimental and numerical simulation results from two cascaded AO cells. The incident object is a square with sides of 2 mm that are demagnified to 1 mm. (a) Experimental result of edge detection by the location of the zero crossing with α1 = α2 ≈ 0.85π. (b) Experimental result showing the two symmetric light-side edges with α1 = α2 ≈ 0.6π. (c) Numerical simulation result demonstrated by the brightness profile with α1 = α2 ≈ 0.85π; it matches the results shown in (a) well. (d) Numerical simulation result demonstrated by the brightness profile with α1 = α2 ≈ 0.6π; it matches the results shown in (b) well.

Fig. 7
Fig. 7

Experimental and numerical simulation results from one AO cell. The incident object is a square with 2-mm sides that are demagnified to 1 mm. (a) Experimental result of two asymmetric edges at α ≈ 0.85π. (b) Experimental result at α ≈ 0.6π; one of the two vertical edges can hardly be distinguished. (c) Numerical simulation result demonstrated by the brightness profile at α ≈ 0.85π. (d) Numerical simulation result demonstrated by the brightness profile at α ≈ 0.6π.

Fig. 8
Fig. 8

Numerical simulation results demonstrated in 3-D intensity-distribution format by use of two cascaded AO cells. The square input object has 1-mm sides, unit intensity, and Q ≈ 28. (a) Edge location at the zero crossing between double peaks near each edge at α1 = α2 ≈ 0.85π. (b) Two symmetric light-side two vertical edges evident at α1 = α2 ≈ 0.6π.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

| f x ,   y | = f x ,   y x 2 + f x ,   y y 2 1 / 2 ,
2 f x ,   y = 2 f x ,   y x 2 + 2 f x ,   y y 2 .
H 0 k x ,   z = L = exp j k x 2 L 2 k 0 - k x Q Λ 0 4 π × cos k x Q Λ 0 4 π 2 + α 2 2 1 / 2 ± jk x Q Λ 0 4 π sin k x Q Λ 0 4 π 2 + α 2 2 1 / 2 k x Q Λ 0 4 π 2 + α 2 2 1 / 2 ,
H 0 k x A ± jBk x ,
E 0 x ,   y = A B   x E inc x ,   y ,
E 0 1 x ,   y = A 1 - B 1 x E inc x ,   y ,
E 0 2 x ,   y = A 2 + B 2 x E 0 1 x ,   y ,
E 0 2 x ,   y = A 1 A 2 + A 1 B 2 x - A 2 B 1 x - B 1 B 2 2 x 2 E inc x ,   y .

Metrics