Abstract

A compact alignment-tolerant interconnect has been developed for use within a prototype modulator-based free-space photonic backplane. The interconnect design encompasses several unique features. Microlens arrays are used, and several beams share each microlens by clustering the optical input–output in a small field about the optical axis of each lens. For simplifying the layout, the optical input and output of each smart-pixel array are clustered separately, thereby allowing a Fourier plane patterned-mirror array to be used in the beam-combination optics. This allows a suitable balance between high interconnection densities and reasonable optical relay distances between adjacent boards to be achieved. The primary advantages of this scheme are the simplicity of the optical design and its alignability, making it ideally suited for high-density interconnection applications.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
    [CrossRef]
  2. T. Sanko, T. Matsumoto, K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system—COSINE-III,” Appl. Opt. 34, 1815–1822 (1995).
    [CrossRef]
  3. D. Z. Tsang, T. J. Goblick, “Free-space optical interconnection technology in parallel processing systems,” Opt. Eng. 33, 1524–1531 (1994).
    [CrossRef]
  4. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
    [CrossRef] [PubMed]
  5. R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
    [CrossRef]
  6. T. H. Szymanski, H. S. Hinton, “A reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
    [CrossRef] [PubMed]
  7. M. E. Prise, N. C. Craft, R. E. LaMarche, M. M. Downs, S. J. Walker, L. A. D’Asaro, L. M. F. Chirovsky, “Module for optical logic circuits using symmetric self-electro-optic devices,” Appl. Opt. 29, 2164–2170 (1990).
    [CrossRef] [PubMed]
  8. S. M. Prince, F. A. P. Tooley, S. Wakelin, M. R. Taghizadeh, “Implementation of an optical perfect shuffle module,” Appl. Opt. 34, 1775–1782 (1995).
    [CrossRef] [PubMed]
  9. H. S. Hinton, in An Introduction to Photonic Switching Fabrics, R. W. Lucky, ed., Applications of Communications Theory Series (Plenum, New York, 1993), p. 293.
  10. D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel device windows,” Appl. Opt. 35, 1220–1233 (1996).
    [CrossRef] [PubMed]
  11. T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” J. Sel. Topics Quantum Electron. 2, 106–117 (1996).
    [CrossRef]
  12. Y. S. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
    [CrossRef] [PubMed]
  13. B. Robertson, “Design of a compact alignment tolerant optical interconnect for photonic backplane applications,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 68–77.
    [CrossRef]
  14. J. Jahns, S. J. Walker, “Two dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
    [CrossRef] [PubMed]
  15. A. L. Lentine, F. A. P. Tooley, “The relationship between speed and tolerances for self electro-optic effect devices,” Appl. Opt. 33, 1354–1375 (1994).
    [CrossRef] [PubMed]
  16. M. P. Y. Desmulliez, B. S. Wherrett, J. F. Snowdon, “Tolerance analysis of cascaded self-electro-optic-effect-device arrays,” Appl. Opt. 33, 1368–1375 (1994).
    [CrossRef] [PubMed]
  17. D. E. Smith, “Fault avoidance for fixed-interconnect optical computers,” Appl. Opt. 31, 167–177 (1992).
    [CrossRef] [PubMed]
  18. P. Belland, J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
    [CrossRef] [PubMed]
  19. Proposed modification to Institute of Electrical and Electronics Engineers Standard 1014-1987.

1997 (1)

1996 (4)

1995 (3)

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

S. M. Prince, F. A. P. Tooley, S. Wakelin, M. R. Taghizadeh, “Implementation of an optical perfect shuffle module,” Appl. Opt. 34, 1775–1782 (1995).
[CrossRef] [PubMed]

T. Sanko, T. Matsumoto, K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system—COSINE-III,” Appl. Opt. 34, 1815–1822 (1995).
[CrossRef]

1994 (3)

1992 (2)

D. E. Smith, “Fault avoidance for fixed-interconnect optical computers,” Appl. Opt. 31, 167–177 (1992).
[CrossRef] [PubMed]

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

1990 (2)

1982 (1)

Araki, S.

Belland, P.

Boisset, G. C.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Chirovsky, L. M. F.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” J. Sel. Topics Quantum Electron. 2, 106–117 (1996).
[CrossRef]

M. E. Prise, N. C. Craft, R. E. LaMarche, M. M. Downs, S. J. Walker, L. A. D’Asaro, L. M. F. Chirovsky, “Module for optical logic circuits using symmetric self-electro-optic devices,” Appl. Opt. 29, 2164–2170 (1990).
[CrossRef] [PubMed]

Craft, N. C.

Crenn, J. P.

D’Asaro, L. A.

Desmulliez, M. P. Y.

Downs, M. M.

Goblick, T. J.

D. Z. Tsang, T. J. Goblick, “Free-space optical interconnection technology in parallel processing systems,” Opt. Eng. 33, 1524–1531 (1994).
[CrossRef]

Hinton, H. S.

Y. S. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
[CrossRef] [PubMed]

T. H. Szymanski, H. S. Hinton, “A reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
[CrossRef] [PubMed]

D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

H. S. Hinton, in An Introduction to Photonic Switching Fabrics, R. W. Lucky, ed., Applications of Communications Theory Series (Plenum, New York, 1993), p. 293.

Jahns, J.

Kajita, M.

Kasahara, K.

Kim, N. H.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Krishnamoorthy, A. V.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” J. Sel. Topics Quantum Electron. 2, 106–117 (1996).
[CrossRef]

Kubota, K.

Kurihara, K.

LaMarche, R. E.

Lentine, A. L.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” J. Sel. Topics Quantum Electron. 2, 106–117 (1996).
[CrossRef]

A. L. Lentine, F. A. P. Tooley, “The relationship between speed and tolerances for self electro-optic effect devices,” Appl. Opt. 33, 1354–1375 (1994).
[CrossRef] [PubMed]

Levi, A. F. J.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Liu, Y. S.

Y. S. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Logan, R. A.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Lucky, R. W.

H. S. Hinton, in An Introduction to Photonic Switching Fabrics, R. W. Lucky, ed., Applications of Communications Theory Series (Plenum, New York, 1993), p. 293.

Matsumoto, T.

Noguchi, K.

Nordin, R. A.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Nottenburg, R. N.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

O’Gorman, J.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Otazo, M. R.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Plant, D. V.

Y. S. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
[CrossRef] [PubMed]

D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Prince, S. M.

Prise, M. E.

Redmond, I.

Robertson, B.

Y. S. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
[CrossRef] [PubMed]

D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

B. Robertson, “Design of a compact alignment tolerant optical interconnect for photonic backplane applications,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 68–77.
[CrossRef]

Robertson, W. M.

Y. S. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Rolston, D. R.

D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Sanko, T.

Schenfeld, E.

Shang, A. Z.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Smith, D. E.

Snowdon, J. F.

Suzaki, T.

Szymanski, T. H.

Taghizadeh, M. R.

Tanbun-Ek, T.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Tooley, F. A. P.

Tsang, D. Z.

D. Z. Tsang, T. J. Goblick, “Free-space optical interconnection technology in parallel processing systems,” Opt. Eng. 33, 1524–1531 (1994).
[CrossRef]

Wakelin, S.

Walker, S. J.

Wherrett, B. S.

Woodward, T. K.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” J. Sel. Topics Quantum Electron. 2, 106–117 (1996).
[CrossRef]

Appl. Opt. (12)

P. Belland, J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
[CrossRef] [PubMed]

M. E. Prise, N. C. Craft, R. E. LaMarche, M. M. Downs, S. J. Walker, L. A. D’Asaro, L. M. F. Chirovsky, “Module for optical logic circuits using symmetric self-electro-optic devices,” Appl. Opt. 29, 2164–2170 (1990).
[CrossRef] [PubMed]

D. E. Smith, “Fault avoidance for fixed-interconnect optical computers,” Appl. Opt. 31, 167–177 (1992).
[CrossRef] [PubMed]

A. L. Lentine, F. A. P. Tooley, “The relationship between speed and tolerances for self electro-optic effect devices,” Appl. Opt. 33, 1354–1375 (1994).
[CrossRef] [PubMed]

M. P. Y. Desmulliez, B. S. Wherrett, J. F. Snowdon, “Tolerance analysis of cascaded self-electro-optic-effect-device arrays,” Appl. Opt. 33, 1368–1375 (1994).
[CrossRef] [PubMed]

S. M. Prince, F. A. P. Tooley, S. Wakelin, M. R. Taghizadeh, “Implementation of an optical perfect shuffle module,” Appl. Opt. 34, 1775–1782 (1995).
[CrossRef] [PubMed]

T. Sanko, T. Matsumoto, K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system—COSINE-III,” Appl. Opt. 34, 1815–1822 (1995).
[CrossRef]

D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef] [PubMed]

T. H. Szymanski, H. S. Hinton, “A reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
[CrossRef] [PubMed]

S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
[CrossRef] [PubMed]

Y. S. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
[CrossRef] [PubMed]

J. Jahns, S. J. Walker, “Two dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
[CrossRef] [PubMed]

IEEE Photon Technol. Lett. (1)

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

J. Lightwave Technol. (1)

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

J. Sel. Topics Quantum Electron. (1)

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” J. Sel. Topics Quantum Electron. 2, 106–117 (1996).
[CrossRef]

Opt. Eng. (1)

D. Z. Tsang, T. J. Goblick, “Free-space optical interconnection technology in parallel processing systems,” Opt. Eng. 33, 1524–1531 (1994).
[CrossRef]

Other (3)

H. S. Hinton, in An Introduction to Photonic Switching Fabrics, R. W. Lucky, ed., Applications of Communications Theory Series (Plenum, New York, 1993), p. 293.

B. Robertson, “Design of a compact alignment tolerant optical interconnect for photonic backplane applications,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 68–77.
[CrossRef]

Proposed modification to Institute of Electrical and Electronics Engineers Standard 1014-1987.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Functional outline of the modulator-based backplane. Rx, receiver; Tx, transmission.

Fig. 2
Fig. 2

Design of the optical interconnect.

Fig. 3
Fig. 3

Clustered window interconnect geometry.

Fig. 4
Fig. 4

Layout of the 4 × 4 clustered window geometry: D L , dimensions of lenslets; d s , pitch between device windows; T c , pitch between window clusters (other abbreviations defined in the text).

Fig. 5
Fig. 5

Field of view versus the focal length for a 4 × 4 cluster on a 90-μm pitch.

Fig. 6
Fig. 6

(a) Lenslet dimensions, (b) window density, (c) die dimensions, and (d) effective f-number ef# versus the modulator window size for a range of focal lengths (f = 6–10 mm).

Fig. 7
Fig. 7

Normal distribution in reflectivity across modulators in their (a) high-reflectivity and (b) low-reflectivity states.

Fig. 8
Fig. 8

(a) Theoretical power spectrum of a 4 × 4 fan-out grating. (b) Experimentally determined power spectrum.

Fig. 9
Fig. 9

(a) Typical dependence of the number of failed channels on the optical input power. (b) Dependence for three random distributions of system parameters.

Fig. 10
Fig. 10

Histogram of the point of failure versus the optical input power for 30 different random distributions of system parameters.

Fig. 11
Fig. 11

Ring geometry for a four-board photonic backplane.

Fig. 12
Fig. 12

Passage of light through an expanded optical interconnect.

Fig. 13
Fig. 13

Coupling efficiency for the extreme edge receiver versus the corresponding rotational misalignment.

Tables (3)

Tables Icon

Table 1 First-Pass Interconnect Parameters

Tables Icon

Table 2 Interconnect Nonuniformities

Tables Icon

Table 3 Interconnect Alignment Tolerances

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ω L = ω 0 1 + f λ / π ω 0 2 2 1 / 2 ,
F ov = arctan h / f ,
D L = 2 3 / 2 d s + α w 0 1 + f λ / π w 0 2 2 1 / 2 ,
D die = N - 1 D L + M - 1 d s + d m / 2 + d r / 2 ,
ef # = f / ) 2 3 / 2 d s + α w 0 1 + f λ / π w 0 2 2 1 / 2 ) .
F x = 1 2 π σ exp - x - μ 2 / 2 σ 2 ,
F z = 1 2 π - z exp - z 2 / 2 d z ,
u mh = R max - R min R max + R min ,
ω 0 = ω 0 1 - exp - k 2 cos k 2 z / z r 0 ,
z r 0 = π ω 0 2 / λ .

Metrics