M. Litong, C. Saloma, “Detection of subthreshold oscillations in sinusoid-crossing sampling,” Phys. Rev. E 57, 3579–3588 (1998).

[CrossRef]

C. Koch, “Computation and the single neuron,” Nature 385, 207–210 (1997).

[CrossRef]
[PubMed]

V. Daria, C. Saloma, “Bandwidth and detection limit in a crossing-based spectrum analyzer,” Rev. Sci. Instrum. 68, 240–242 (1997).

[CrossRef]

H. Voelker, “Toward a unified theory of modulation. Part II. Zero manipulation,” Proc. IEEE 54, 735–755 (1996).

[CrossRef]

A. Bulsara, L. Gammaitoni, “Tuning in to noise,” Phys. Today39–45 (March1996).

C. M. Blanca, V. Daria, C. Saloma, “Spectral recovery in crossing-based spectral analysis by analytic continuation,” Appl. Opt. 35, 6417–6423 (1996).

[CrossRef]
[PubMed]

K. Weisenfeld, F. Moss, “Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDS,” Nature 373, 33–36 (1995).

[CrossRef]

L. Gammaitoni, “Stochastic resonance and the dithering effect in threshold physical systems,” Phys. Rev. E 52, 4691–4698 (1995).

[CrossRef]

J. Hopfield, “Pattern recognition computation using action potential timing for stimulus representation,” Nature 376, 33–36 (1995).

[CrossRef]
[PubMed]

G. Johhson, “Constructions of particular random processes,” Proc. IEEE 82, 270–285 (1994).

[CrossRef]

L. Gammaitoni, F. Marchesoni, E. Menicella-Saetta, S. Santucci, “Multiplicative stochastic resonance,” Phys. Rev. E 49, 4878–4881 (1994).

[CrossRef]

M. Escobido, C. Saloma, “Detection accuracy in zero-crossing based spectrum analysis and image reconstruction,” Appl. Opt. 35, 6417–6423 (1994).

C. Saloma, V. R. Daria, “Performance of a zero-crossing optical spectrum analyzer,” Opt. Lett. 18, 1468–1470 (1993).

[CrossRef]
[PubMed]

Y. Zeevi, E. Shlomot, “Nonuniform sampling and antialiasing in image representation,” IEEE Trans. Signal Process. 41, 1223–1229 (1993).

[CrossRef]

C. Saloma, “Computational complexity and observation of physical signals,” J. Appl. Phys. 74, 5314–5319 (1993).

[CrossRef]

A. Zakhor, A. Oppenheim, “Reconstruction of two-dimensional signals from level crossings,” Proc. IEEE 78, 31–55 (1990).

[CrossRef]

B. McNamara, K. Weisenfeld, “Theory of stochastic resonance,” Phys. Rev. A 39, 4854–4869 (1989).

[CrossRef]
[PubMed]

A. Requicha, “The zeros of entire functions: theory and engineering applications,” Proc. IEEE 68, 308–328 (1980).

[CrossRef]

B. Logan, “Information in zero crossings of bandpass signals,” Bell Sys. Tech. J. 56, 487–510 (1977).

F. Bond, C. Cahn, “On sampling the xeros of bandwidth limited signals,” IRE Trans. Inf. Theory IT-4, 110–113 (1958).

[CrossRef]

A. Zakhor, G. Alustad, “Two-dimensional polynomical interpolation from nonuniform samples,” IEEE Trans. Signal Process. 40, 169–175 (1992).

[CrossRef]

F. Bond, C. Cahn, “On sampling the xeros of bandwidth limited signals,” IRE Trans. Inf. Theory IT-4, 110–113 (1958).

[CrossRef]

A. Bulsara, L. Gammaitoni, “Tuning in to noise,” Phys. Today39–45 (March1996).

F. Bond, C. Cahn, “On sampling the xeros of bandwidth limited signals,” IRE Trans. Inf. Theory IT-4, 110–113 (1958).

[CrossRef]

J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979).

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes—The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986), pp. 24–29.

A. Bulsara, L. Gammaitoni, “Tuning in to noise,” Phys. Today39–45 (March1996).

L. Gammaitoni, “Stochastic resonance and the dithering effect in threshold physical systems,” Phys. Rev. E 52, 4691–4698 (1995).

[CrossRef]

L. Gammaitoni, F. Marchesoni, E. Menicella-Saetta, S. Santucci, “Multiplicative stochastic resonance,” Phys. Rev. E 49, 4878–4881 (1994).

[CrossRef]

J. Hopfield, “Pattern recognition computation using action potential timing for stimulus representation,” Nature 376, 33–36 (1995).

[CrossRef]
[PubMed]

G. Johhson, “Constructions of particular random processes,” Proc. IEEE 82, 270–285 (1994).

[CrossRef]

S. Kay, R. Sudhakar, “A zero-crossing based spectrum analyzer,” IEEE Trans. Acoust. Speech Signal Process. 34, 96–104 (1987).

[CrossRef]

C. Koch, “Computation and the single neuron,” Nature 385, 207–210 (1997).

[CrossRef]
[PubMed]

M. Litong, C. Saloma, “Detection of subthreshold oscillations in sinusoid-crossing sampling,” Phys. Rev. E 57, 3579–3588 (1998).

[CrossRef]

B. Logan, “Information in zero crossings of bandpass signals,” Bell Sys. Tech. J. 56, 487–510 (1977).

J. Proakis, D. Manolakis, Digital Signal Processing: Principles, Algorithm, and Applications, 2nd ed. (Macmillan, New York, 1992), pp. 943–944.

L. Gammaitoni, F. Marchesoni, E. Menicella-Saetta, S. Santucci, “Multiplicative stochastic resonance,” Phys. Rev. E 49, 4878–4881 (1994).

[CrossRef]

B. McNamara, K. Weisenfeld, “Theory of stochastic resonance,” Phys. Rev. A 39, 4854–4869 (1989).

[CrossRef]
[PubMed]

L. Gammaitoni, F. Marchesoni, E. Menicella-Saetta, S. Santucci, “Multiplicative stochastic resonance,” Phys. Rev. E 49, 4878–4881 (1994).

[CrossRef]

A. Montowski, A. Stark, Introduction to Higher Algebra (Pergamon, Oxford, 1964), pp. 364–369.

K. Weisenfeld, F. Moss, “Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDS,” Nature 373, 33–36 (1995).

[CrossRef]

E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, New York, 1963).

A. Zakhor, A. Oppenheim, “Reconstruction of two-dimensional signals from level crossings,” Proc. IEEE 78, 31–55 (1990).

[CrossRef]

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes—The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986), pp. 24–29.

J. Proakis, D. Manolakis, Digital Signal Processing: Principles, Algorithm, and Applications, 2nd ed. (Macmillan, New York, 1992), pp. 943–944.

A. Requicha, “The zeros of entire functions: theory and engineering applications,” Proc. IEEE 68, 308–328 (1980).

[CrossRef]

M. Litong, C. Saloma, “Detection of subthreshold oscillations in sinusoid-crossing sampling,” Phys. Rev. E 57, 3579–3588 (1998).

[CrossRef]

V. Daria, C. Saloma, “Bandwidth and detection limit in a crossing-based spectrum analyzer,” Rev. Sci. Instrum. 68, 240–242 (1997).

[CrossRef]

C. M. Blanca, V. Daria, C. Saloma, “Spectral recovery in crossing-based spectral analysis by analytic continuation,” Appl. Opt. 35, 6417–6423 (1996).

[CrossRef]
[PubMed]

M. Escobido, C. Saloma, “Detection accuracy in zero-crossing based spectrum analysis and image reconstruction,” Appl. Opt. 35, 6417–6423 (1994).

C. Saloma, V. R. Daria, “Performance of a zero-crossing optical spectrum analyzer,” Opt. Lett. 18, 1468–1470 (1993).

[CrossRef]
[PubMed]

C. Saloma, “Computational complexity and observation of physical signals,” J. Appl. Phys. 74, 5314–5319 (1993).

[CrossRef]

C. Saloma, P. Haeberli, “Optical spectrum analysis by zero crossings,” Opt. Lett. 16, 1535–1537 (1991).

[CrossRef]
[PubMed]

L. Gammaitoni, F. Marchesoni, E. Menicella-Saetta, S. Santucci, “Multiplicative stochastic resonance,” Phys. Rev. E 49, 4878–4881 (1994).

[CrossRef]

Y. Zeevi, E. Shlomot, “Nonuniform sampling and antialiasing in image representation,” IEEE Trans. Signal Process. 41, 1223–1229 (1993).

[CrossRef]

A. Montowski, A. Stark, Introduction to Higher Algebra (Pergamon, Oxford, 1964), pp. 364–369.

S. Kay, R. Sudhakar, “A zero-crossing based spectrum analyzer,” IEEE Trans. Acoust. Speech Signal Process. 34, 96–104 (1987).

[CrossRef]

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes—The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986), pp. 24–29.

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes—The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986), pp. 24–29.

H. Voelker, “Toward a unified theory of modulation. Part II. Zero manipulation,” Proc. IEEE 54, 735–755 (1996).

[CrossRef]

K. Weisenfeld, F. Moss, “Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDS,” Nature 373, 33–36 (1995).

[CrossRef]

B. McNamara, K. Weisenfeld, “Theory of stochastic resonance,” Phys. Rev. A 39, 4854–4869 (1989).

[CrossRef]
[PubMed]

A. Zakhor, G. Alustad, “Two-dimensional polynomical interpolation from nonuniform samples,” IEEE Trans. Signal Process. 40, 169–175 (1992).

[CrossRef]

A. Zakhor, A. Oppenheim, “Reconstruction of two-dimensional signals from level crossings,” Proc. IEEE 78, 31–55 (1990).

[CrossRef]

K. Minami, S. Kawata, S. Minami, “Zero-crossing sampling of Fourier transform interferograms and spectrum reconstruction using real-zero interpolation,” Appl. Opt. 31, 6322–6327 (1992).

[CrossRef]
[PubMed]

C. M. Blanca, V. Daria, C. Saloma, “Spectral recovery in crossing-based spectral analysis by analytic continuation,” Appl. Opt. 35, 6417–6423 (1996).

[CrossRef]
[PubMed]

M. Escobido, C. Saloma, “Detection accuracy in zero-crossing based spectrum analysis and image reconstruction,” Appl. Opt. 35, 6417–6423 (1994).

S. J. Howard, “Fast algorithm for implementing the minimum-negativity constraint for Fourier spectrum extrapolation,” Appl. Opt. 25, 1670–1675 (1986).

[CrossRef]
[PubMed]

B. Logan, “Information in zero crossings of bandpass signals,” Bell Sys. Tech. J. 56, 487–510 (1977).

S. Kay, R. Sudhakar, “A zero-crossing based spectrum analyzer,” IEEE Trans. Acoust. Speech Signal Process. 34, 96–104 (1987).

[CrossRef]

A. Zakhor, G. Alustad, “Two-dimensional polynomical interpolation from nonuniform samples,” IEEE Trans. Signal Process. 40, 169–175 (1992).

[CrossRef]

Y. Zeevi, E. Shlomot, “Nonuniform sampling and antialiasing in image representation,” IEEE Trans. Signal Process. 41, 1223–1229 (1993).

[CrossRef]

F. Bond, C. Cahn, “On sampling the xeros of bandwidth limited signals,” IRE Trans. Inf. Theory IT-4, 110–113 (1958).

[CrossRef]

C. Saloma, “Computational complexity and observation of physical signals,” J. Appl. Phys. 74, 5314–5319 (1993).

[CrossRef]

F. O. Huck, C. Fales, N. Haylo, R. W. Samms, K. Stacey, “Image gathering and processing: information and fidelity,” J. Opt. Soc. Am. A 2, 1644–1666 (1985).

[CrossRef]
[PubMed]

Y. Zeevi, A. Gavriely, S. Shamai, “Image representation by zero and sine wave crossings.” J. Opt. Soc. Am. A 4, 2045–2060 (1987).

[CrossRef]

K. Weisenfeld, F. Moss, “Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDS,” Nature 373, 33–36 (1995).

[CrossRef]

J. Hopfield, “Pattern recognition computation using action potential timing for stimulus representation,” Nature 376, 33–36 (1995).

[CrossRef]
[PubMed]

C. Koch, “Computation and the single neuron,” Nature 385, 207–210 (1997).

[CrossRef]
[PubMed]

B. McNamara, K. Weisenfeld, “Theory of stochastic resonance,” Phys. Rev. A 39, 4854–4869 (1989).

[CrossRef]
[PubMed]

L. Gammaitoni, F. Marchesoni, E. Menicella-Saetta, S. Santucci, “Multiplicative stochastic resonance,” Phys. Rev. E 49, 4878–4881 (1994).

[CrossRef]

L. Gammaitoni, “Stochastic resonance and the dithering effect in threshold physical systems,” Phys. Rev. E 52, 4691–4698 (1995).

[CrossRef]

M. Litong, C. Saloma, “Detection of subthreshold oscillations in sinusoid-crossing sampling,” Phys. Rev. E 57, 3579–3588 (1998).

[CrossRef]

A. Bulsara, L. Gammaitoni, “Tuning in to noise,” Phys. Today39–45 (March1996).

G. Johhson, “Constructions of particular random processes,” Proc. IEEE 82, 270–285 (1994).

[CrossRef]

H. Voelker, “Toward a unified theory of modulation. Part II. Zero manipulation,” Proc. IEEE 54, 735–755 (1996).

[CrossRef]

A. Requicha, “The zeros of entire functions: theory and engineering applications,” Proc. IEEE 68, 308–328 (1980).

[CrossRef]

A. Zakhor, A. Oppenheim, “Reconstruction of two-dimensional signals from level crossings,” Proc. IEEE 78, 31–55 (1990).

[CrossRef]

V. Daria, C. Saloma, “Bandwidth and detection limit in a crossing-based spectrum analyzer,” Rev. Sci. Instrum. 68, 240–242 (1997).

[CrossRef]

A. Montowski, A. Stark, Introduction to Higher Algebra (Pergamon, Oxford, 1964), pp. 364–369.

J. Proakis, D. Manolakis, Digital Signal Processing: Principles, Algorithm, and Applications, 2nd ed. (Macmillan, New York, 1992), pp. 943–944.

J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979).

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes—The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986), pp. 24–29.

E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, New York, 1963).