Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design, implementation, and characterization of a hybrid optical interconnect for a four-stage free-space optical backplane demonstrator

Not Accessible

Your library or personal account may give you access

Abstract

A four-stage unidirectional ring free-space optical interconnect system was designed, analyzed, implemented, and characterized. The optical system was used within a complementary metal-oxide semiconductor–self-electro-optic-effect-device-based optical backplane demonstrator that was designed to fit into a standard VME chassis. This optical interconnect was a hybrid microlens–macrolens system, in which the microlens relays were arranged in a maximum lens-to-waist configuration to route the optical beams from the optical power supply to the transceiver arrays, while the macrolens optical relays were arranged in a telecentric configuration to route optical signal beams from stage to stage. The following aspects of the optical system design are discussed: the optical parameters for the hybrid optical system, the image mapping of the two-dimensional array of optical beams from stage to stage, the alignment tolerance of the hybrid relay system, and the power budget of the overall optical interconnect. The implementation of the optical system, including the characterization of optical components, subsystem prealignment, and final system assembly, is presented. The two-dimensional array of beams for the stage-to-stage interconnect was adjusted with a rotational error of <0.05° and a lateral offset error of <3.5 μm. The measured throughput is in good agreement with the lower-bound predictions obtained in the theoretical results, with an optical power throughput of -20.2 dB from the fiber input of the optical power supply to the modulator array and -25.5 dB from the fiber input to the detector plane.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Design of an optical interconnect for photonic backplane applications

Brian Robertson
Appl. Opt. 37(14) 2974-2984 (1998)

Design, implementation, and characterization of an optical power supply spot-array generator for a four-stage free-space optical backplane

R. Iyer, Y. S. Liu, G. C. Boisset, D. J. Goodwill, M. H. Ayliffe, B. Robertson, W. M. Robertson, D. Kabal, F. Lacroix, and D. V. Plant
Appl. Opt. 36(35) 9230-9242 (1997)

Optomechanics for a four-stage hybrid-self-electro-optic-device-based free-space optical backplane

G. C. Boisset, M. H. Ayliffe, B. Robertson, R. Iyer, Y. S. Liu, D. V. Plant, D. J. Goodwill, D. Kabal, and D. Pavlasek
Appl. Opt. 36(29) 7341-7346 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved