Abstract

Projected performance metrics of free-space optical and electrical interconnections are estimated and compared in terms of smart-pixel input–output bandwidth density and practical geometric packaging constraints. The results suggest that three-dimensional optical interconnects based on smart pixels provide the highest volume, latency, and power-consumption benefits for applications in which globally interconnected networks are required to implement links across many integrated-circuit chips. It is further shown that interconnection approaches based on macro-optical elements achieve better scaling than those based on micro-optical elements. The scaling limits of micro-optical-based architectures stem from the need for repeaters to overcome diffraction losses in multichip architectures with high bisection bandwidth. The overall results provide guidance in determining whether and how strongly a free-space optical interconnection approach can be applied to a given multiprocessor problem.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nakahara, S. Matsuo, S. Fukushima, T. Kurokawa, “Performance comparison between multiple-quantum-well modulator-based and vertical-cavity-surface-emitting laser-based smart pixels,” Appl. Opt. 35, 860–871 (1996).
    [CrossRef] [PubMed]
  2. F. T. Leighton, Introduction to Parallel Algorithms and Architectures; Arrays, Trees, Hypercubes (Morgan-Kaufmann, San Mateo, Calif., 1992).
  3. H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 81–89 (1971).
    [CrossRef]
  4. A. W. Lohmann, “What classical optics can do for the digital optical computer,” Appl. Opt. 25, 1543–1549 (1986).
    [CrossRef] [PubMed]
  5. G. Eichmann, Y. Li, “Compact optical generalized perfect shuffle,” Appl. Opt. 26, 1167–1169 (1987).
    [CrossRef]
  6. S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D optical multistage interconnection networks,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 209–216 (1987).
    [CrossRef]
  7. K.-H. Brenner, A. Huang, “Optical implementations of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988).
    [CrossRef] [PubMed]
  8. C. W. Stirk, R. A. Athale, M. W. Haney, “Folded perfect shuffle optical processor,” Appl. Opt. 27, 202–203 (1988).
    [CrossRef] [PubMed]
  9. A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” in Optical Computing ’88, P. Chaval, J. W. Goodman, G. Roblin, eds., Proc. SPIE963, 270–282 (1988).
    [CrossRef]
  10. C. D. Thompson, “Area–time complexity for VLSI,” in Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing (Association for Computing Machinery, New York, 1979), pp. 81–88.
    [CrossRef]
  11. H. Van Marck, J. Van Campenhout, “Three-dimensional optoelectronic architectures for massively parallel processing systems,” in Proceedings of the Fourth International Conference on MPPOI, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, New York, 1997), pp. 178–182.
  12. R. R. Michael, M. P. Christensen, M. W. Haney, “Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding Banyan network,” J. Lightwave Technol. 14, 1970–1978 (1996).
    [CrossRef]
  13. M. P. Christensen, M. W. Haney, “Two-bounce free-space arbitrary interconnection architecture,” in Proceedings of the Fourth International Conference on MPPOI, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, New York, 1997), pp. 61–67.
  14. M. W. Haney, M. P. Christensen, “Fundamental geometric advantages of free-space optical interconnects,” in Proceedings of the Third International Conference on MPPOI, A. Gottlieb, Y. Li, E. Schenfeld, eds. (IEEE Computer Society, New York, 1996), pp. 16–23.
  15. M. W. Haney, M. P. Christensen, K. Raj, P. Milojkovic, “Packaging advantages of macro-optical free-space interconnections over micro-optical and electrical interconnections,” in Advances in Electronic Packaging 1997, Vol. 19-1 of EEP Series, E. Suhir, M. Shiratori, Y. C. Lee, eds. (American Society of Mechanical Engineers, New York, 1997), pp. 811–817.
  16. R. G. Schell, G. Tyras, “Irradiance from an aperture with a truncated-Gaussian field distribution,” J. Opt. Soc. Am. 61, 31–35 (1971).
    [CrossRef]
  17. P. Bellard, J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
    [CrossRef]
  18. L. D. Dickson, “Characteristics of a propagating Gaussian beam,” Appl. Opt. 9, 1854–1861 (1970).
    [CrossRef] [PubMed]
  19. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 48–51.
  20. M. R. Feldman, C. C. Guest, T. J. Drabik, S. C. Esener, “Comparison between electrical and free space optical interconnects for fine grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989).
    [CrossRef] [PubMed]
  21. M. W. Haney, M. P. Christensen, “Smart pixel based Viterbi decoder,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 99–101.

1996 (2)

R. R. Michael, M. P. Christensen, M. W. Haney, “Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding Banyan network,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

T. Nakahara, S. Matsuo, S. Fukushima, T. Kurokawa, “Performance comparison between multiple-quantum-well modulator-based and vertical-cavity-surface-emitting laser-based smart pixels,” Appl. Opt. 35, 860–871 (1996).
[CrossRef] [PubMed]

1989 (1)

1988 (2)

1987 (1)

1986 (1)

1982 (1)

1971 (2)

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 81–89 (1971).
[CrossRef]

R. G. Schell, G. Tyras, “Irradiance from an aperture with a truncated-Gaussian field distribution,” J. Opt. Soc. Am. 61, 31–35 (1971).
[CrossRef]

1970 (1)

Athale, R. A.

Bellard, P.

Brenner, K.-H.

Christensen, M. P.

R. R. Michael, M. P. Christensen, M. W. Haney, “Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding Banyan network,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

M. W. Haney, M. P. Christensen, K. Raj, P. Milojkovic, “Packaging advantages of macro-optical free-space interconnections over micro-optical and electrical interconnections,” in Advances in Electronic Packaging 1997, Vol. 19-1 of EEP Series, E. Suhir, M. Shiratori, Y. C. Lee, eds. (American Society of Mechanical Engineers, New York, 1997), pp. 811–817.

M. P. Christensen, M. W. Haney, “Two-bounce free-space arbitrary interconnection architecture,” in Proceedings of the Fourth International Conference on MPPOI, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, New York, 1997), pp. 61–67.

M. W. Haney, M. P. Christensen, “Smart pixel based Viterbi decoder,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 99–101.

M. W. Haney, M. P. Christensen, “Fundamental geometric advantages of free-space optical interconnects,” in Proceedings of the Third International Conference on MPPOI, A. Gottlieb, Y. Li, E. Schenfeld, eds. (IEEE Computer Society, New York, 1996), pp. 16–23.

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 48–51.

Crenn, J. P.

Dickson, L. D.

Drabik, T. J.

Eichmann, G.

Esener, S. C.

Feldman, M. R.

Fukushima, S.

Glaser, I.

A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” in Optical Computing ’88, P. Chaval, J. W. Goodman, G. Roblin, eds., Proc. SPIE963, 270–282 (1988).
[CrossRef]

Guest, C. C.

Haney, M. W.

R. R. Michael, M. P. Christensen, M. W. Haney, “Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding Banyan network,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

C. W. Stirk, R. A. Athale, M. W. Haney, “Folded perfect shuffle optical processor,” Appl. Opt. 27, 202–203 (1988).
[CrossRef] [PubMed]

M. W. Haney, M. P. Christensen, K. Raj, P. Milojkovic, “Packaging advantages of macro-optical free-space interconnections over micro-optical and electrical interconnections,” in Advances in Electronic Packaging 1997, Vol. 19-1 of EEP Series, E. Suhir, M. Shiratori, Y. C. Lee, eds. (American Society of Mechanical Engineers, New York, 1997), pp. 811–817.

M. P. Christensen, M. W. Haney, “Two-bounce free-space arbitrary interconnection architecture,” in Proceedings of the Fourth International Conference on MPPOI, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, New York, 1997), pp. 61–67.

M. W. Haney, M. P. Christensen, “Fundamental geometric advantages of free-space optical interconnects,” in Proceedings of the Third International Conference on MPPOI, A. Gottlieb, Y. Li, E. Schenfeld, eds. (IEEE Computer Society, New York, 1996), pp. 16–23.

M. W. Haney, M. P. Christensen, “Smart pixel based Viterbi decoder,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 99–101.

Hinton, H. S.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 48–51.

Huang, A.

Krile, T. F.

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D optical multistage interconnection networks,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 209–216 (1987).
[CrossRef]

Kurokawa, T.

Leighton, F. T.

F. T. Leighton, Introduction to Parallel Algorithms and Architectures; Arrays, Trees, Hypercubes (Morgan-Kaufmann, San Mateo, Calif., 1992).

Li, Y.

Lin, S.-H.

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D optical multistage interconnection networks,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 209–216 (1987).
[CrossRef]

Lohmann, A. W.

Matsuo, S.

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 48–51.

Michael, R. R.

R. R. Michael, M. P. Christensen, M. W. Haney, “Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding Banyan network,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

Milojkovic, P.

M. W. Haney, M. P. Christensen, K. Raj, P. Milojkovic, “Packaging advantages of macro-optical free-space interconnections over micro-optical and electrical interconnections,” in Advances in Electronic Packaging 1997, Vol. 19-1 of EEP Series, E. Suhir, M. Shiratori, Y. C. Lee, eds. (American Society of Mechanical Engineers, New York, 1997), pp. 811–817.

Nakahara, T.

Raj, K.

M. W. Haney, M. P. Christensen, K. Raj, P. Milojkovic, “Packaging advantages of macro-optical free-space interconnections over micro-optical and electrical interconnections,” in Advances in Electronic Packaging 1997, Vol. 19-1 of EEP Series, E. Suhir, M. Shiratori, Y. C. Lee, eds. (American Society of Mechanical Engineers, New York, 1997), pp. 811–817.

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 48–51.

Sawchuk, A. A.

A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” in Optical Computing ’88, P. Chaval, J. W. Goodman, G. Roblin, eds., Proc. SPIE963, 270–282 (1988).
[CrossRef]

Schell, R. G.

Stirk, C. W.

Stone, H. S.

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 81–89 (1971).
[CrossRef]

Thompson, C. D.

C. D. Thompson, “Area–time complexity for VLSI,” in Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing (Association for Computing Machinery, New York, 1979), pp. 81–88.
[CrossRef]

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 48–51.

Tyras, G.

Van Campenhout, J.

H. Van Marck, J. Van Campenhout, “Three-dimensional optoelectronic architectures for massively parallel processing systems,” in Proceedings of the Fourth International Conference on MPPOI, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, New York, 1997), pp. 178–182.

Van Marck, H.

H. Van Marck, J. Van Campenhout, “Three-dimensional optoelectronic architectures for massively parallel processing systems,” in Proceedings of the Fourth International Conference on MPPOI, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, New York, 1997), pp. 178–182.

Walkup, J. F.

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D optical multistage interconnection networks,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 209–216 (1987).
[CrossRef]

Appl. Opt. (8)

IEEE Trans. Comput. (1)

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 81–89 (1971).
[CrossRef]

J. Lightwave Technol. (1)

R. R. Michael, M. P. Christensen, M. W. Haney, “Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding Banyan network,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (10)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 48–51.

M. P. Christensen, M. W. Haney, “Two-bounce free-space arbitrary interconnection architecture,” in Proceedings of the Fourth International Conference on MPPOI, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, New York, 1997), pp. 61–67.

M. W. Haney, M. P. Christensen, “Fundamental geometric advantages of free-space optical interconnects,” in Proceedings of the Third International Conference on MPPOI, A. Gottlieb, Y. Li, E. Schenfeld, eds. (IEEE Computer Society, New York, 1996), pp. 16–23.

M. W. Haney, M. P. Christensen, K. Raj, P. Milojkovic, “Packaging advantages of macro-optical free-space interconnections over micro-optical and electrical interconnections,” in Advances in Electronic Packaging 1997, Vol. 19-1 of EEP Series, E. Suhir, M. Shiratori, Y. C. Lee, eds. (American Society of Mechanical Engineers, New York, 1997), pp. 811–817.

A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” in Optical Computing ’88, P. Chaval, J. W. Goodman, G. Roblin, eds., Proc. SPIE963, 270–282 (1988).
[CrossRef]

C. D. Thompson, “Area–time complexity for VLSI,” in Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing (Association for Computing Machinery, New York, 1979), pp. 81–88.
[CrossRef]

H. Van Marck, J. Van Campenhout, “Three-dimensional optoelectronic architectures for massively parallel processing systems,” in Proceedings of the Fourth International Conference on MPPOI, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, New York, 1997), pp. 178–182.

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D optical multistage interconnection networks,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 209–216 (1987).
[CrossRef]

F. T. Leighton, Introduction to Parallel Algorithms and Architectures; Arrays, Trees, Hypercubes (Morgan-Kaufmann, San Mateo, Calif., 1992).

M. W. Haney, M. P. Christensen, “Smart pixel based Viterbi decoder,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 99–101.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Internal and external interconnection BW partition boundaries for metallic interconnection technologies.

Fig. 2
Fig. 2

Example interconnection network of 16 nodes.

Fig. 3
Fig. 3

Top-level minimum bisection partitioning of the nodes depicted in Fig. 2.

Fig. 4
Fig. 4

Subpartitioning of Fig. 3 into second-level bisections.

Fig. 5
Fig. 5

Bisection tree for depicting the two levels of bisection of Fig. 2. Each node is labeled with the partition name, the internal BB of the partition, and its I/O BW requirement. This tree can be completed to four levels of bisection, thereby creating partitions of one node each.

Fig. 6
Fig. 6

Three basic optical interconnection approaches, shown for a reflective architecture.

Fig. 7
Fig. 7

Area-scaling graph for macro-optical, micro-optical, and metallic planar interconnections.

Fig. 8
Fig. 8

Volume-scaling graph for macro-optical, micro-optical, and metallic planar interconnections.

Fig. 9
Fig. 9

Maximum path-length scaling graph for macro-optical, micro-optical, and metallic planar interconnections.

Fig. 10
Fig. 10

Power-scaling graph for macro-optical, micro-optical, and metallic planar interconnections.

Fig. 11
Fig. 11

Photograph of a prototypical macro-optical reflective multichip interconnection module.

Tables (2)

Tables Icon

Table 1 Example Planar Interconnect Parameters

Tables Icon

Table 2 Example Optical Interconnect Parameters

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

BB max = A max   D layer ,
IO max = 4 A max   D layer .
A i , j = MAX BB D layer 2 ,   A i - 1 , 2 j + A i - 1 , 2 j - 1 ,
L max = 2 A = 2 BB D layer ,
V layer = H layer A = H layer BB D layer 2 .
P capacitive = P c A   D layer A = P c D layer A = P c BB 2 D layer ,
P lossless = P l BB ,
w 1 = w 0 1 + f λ π w 0 2 2 1 / 2 = d 2 k ,
w 2 = w 1 1 + z max λ π w 1 2 2 1 / 2 = d 2 .
z max = k 2 - 1 1 / 2 π d 2 4 λ k 2 .
h = f # z max 1 + 4 f # 2 1 / 2 .
A macro = 2 BB D I / O .
A micro = 2 BB D eff ,
D eff = D I / O h f # A micro 1 / 2 ,
A micro = 4 BB 2 f # 2 D I / O 2 h 2 .
V macro = A macro 3 / 2 f # ,
V micro = hA micro .
L max = A 1 + 2 f # 2 1 / 2 .
P = ANP link ,

Metrics