Abstract

We investigate the use of low-threshold 980-nm vertical-cavity surface-emitting lasers for free-space optical interconnects. The vertical-cavity surface-emitting lasers and backilluminated detectors are monolithically integrated with microlenses on the back sides of the growth substrates to eliminate the necessity of external optics. With a channel pitch of 250 μm, an interconnect length between boards of the order of 5 to 10 mm with a ±50-μm lateral alignment tolerance can be achieved without external relay optics. The complete link is modeled to predict the system’s efficiency and maximum bit rate. Data transmission at 500 Mbits/s per channel is demonstrated. The data rate was limited by parasitics, not the inherent bandwidth of the laser diodes.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [CrossRef] [PubMed]
  2. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
    [CrossRef]
  3. J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Optics Commun. 109, 328–337 (1994).
    [CrossRef]
  4. Y. Li, T. Wang, R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronics crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
    [CrossRef] [PubMed]
  5. V. N. Morozov, Y. C. Lee, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems and packaging,” Opt. Eng. 35, 2034–2044 (1996).
    [CrossRef]
  6. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
    [CrossRef] [PubMed]
  7. D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
    [CrossRef]
  8. W. S. Ishak, K. H. Hahn, B. L. Booth, C. Muheller, A. A. J. Levi, R. Craig, “Optical interconnects: the POLO project,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE2400, 214–221 (1995).
    [CrossRef]
  9. K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, H. C. Chui , “Selectively oxidized vertical-cavity lasers,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting 1995 (IEEE, New York, 1995), pp. 412–413, paper SCL 14.1.
  10. B. J. Thibeault, E. R. Hegblom, P. D. Floyd, R. Naone, Y. Akulova, L. A. Coldren, “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 Å) oxide aperture,” IEEE Photon. Technol. Lett. 8, 593–595 (1996).
    [CrossRef]
  11. B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
    [CrossRef]
  12. B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, L. A. Coldren, “High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers,” IEEE Photon. Technol. Lett. 9, 11–13 (1997).
    [CrossRef]
  13. P. Schnitzer, U. Fiedler, M. Grabherr, C. Jung, G. Reiner, W. Zich, L. J. Ebeling, “Bias-free 1 Gbit/s data transmission using singlemode GaAs VCSELs at λ = 835 nm,” Electron. Lett. 32, 2145–2146 (1996).
    [CrossRef]
  14. E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
    [CrossRef]
  15. E. R. Hegblom, D. I. Babic, B. J. Thibeault, L. A. Coldren, “Estimation of scattering losses in dielectrically apertured vertical cavity lasers,” Appl. Phys. Lett. 68, 1757–1759 (1996).
    [CrossRef]
  16. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  17. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), pp. 214–217, 235.

1997 (3)

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[CrossRef]

B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, L. A. Coldren, “High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers,” IEEE Photon. Technol. Lett. 9, 11–13 (1997).
[CrossRef]

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
[CrossRef]

1996 (7)

E. R. Hegblom, D. I. Babic, B. J. Thibeault, L. A. Coldren, “Estimation of scattering losses in dielectrically apertured vertical cavity lasers,” Appl. Phys. Lett. 68, 1757–1759 (1996).
[CrossRef]

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

P. Schnitzer, U. Fiedler, M. Grabherr, C. Jung, G. Reiner, W. Zich, L. J. Ebeling, “Bias-free 1 Gbit/s data transmission using singlemode GaAs VCSELs at λ = 835 nm,” Electron. Lett. 32, 2145–2146 (1996).
[CrossRef]

Y. Li, T. Wang, R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronics crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
[CrossRef] [PubMed]

V. N. Morozov, Y. C. Lee, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems and packaging,” Opt. Eng. 35, 2034–2044 (1996).
[CrossRef]

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

B. J. Thibeault, E. R. Hegblom, P. D. Floyd, R. Naone, Y. Akulova, L. A. Coldren, “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 Å) oxide aperture,” IEEE Photon. Technol. Lett. 8, 593–595 (1996).
[CrossRef]

1994 (1)

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Optics Commun. 109, 328–337 (1994).
[CrossRef]

1992 (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

1988 (1)

Akulova, Y.

B. J. Thibeault, E. R. Hegblom, P. D. Floyd, R. Naone, Y. Akulova, L. A. Coldren, “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 Å) oxide aperture,” IEEE Photon. Technol. Lett. 8, 593–595 (1996).
[CrossRef]

Ayliffe, M. H.

Babic, D. I.

E. R. Hegblom, D. I. Babic, B. J. Thibeault, L. A. Coldren, “Estimation of scattering losses in dielectrically apertured vertical cavity lasers,” Appl. Phys. Lett. 68, 1757–1759 (1996).
[CrossRef]

Bertilsson, K.

B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, L. A. Coldren, “High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers,” IEEE Photon. Technol. Lett. 9, 11–13 (1997).
[CrossRef]

Boisset, G. C.

Booth, B. L.

W. S. Ishak, K. H. Hahn, B. L. Booth, C. Muheller, A. A. J. Levi, R. Craig, “Optical interconnects: the POLO project,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE2400, 214–221 (1995).
[CrossRef]

Brown-Goebeler, K. F.

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Optics Commun. 109, 328–337 (1994).
[CrossRef]

Choquette, K. D.

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, H. C. Chui , “Selectively oxidized vertical-cavity lasers,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting 1995 (IEEE, New York, 1995), pp. 412–413, paper SCL 14.1.

Chui, H. C.

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, H. C. Chui , “Selectively oxidized vertical-cavity lasers,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting 1995 (IEEE, New York, 1995), pp. 412–413, paper SCL 14.1.

Chun, C. K. Y.

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Coldren, L. A.

B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, L. A. Coldren, “High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers,” IEEE Photon. Technol. Lett. 9, 11–13 (1997).
[CrossRef]

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
[CrossRef]

E. R. Hegblom, D. I. Babic, B. J. Thibeault, L. A. Coldren, “Estimation of scattering losses in dielectrically apertured vertical cavity lasers,” Appl. Phys. Lett. 68, 1757–1759 (1996).
[CrossRef]

B. J. Thibeault, E. R. Hegblom, P. D. Floyd, R. Naone, Y. Akulova, L. A. Coldren, “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 Å) oxide aperture,” IEEE Photon. Technol. Lett. 8, 593–595 (1996).
[CrossRef]

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), pp. 214–217, 235.

Corzine, S. W.

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), pp. 214–217, 235.

Craig, R.

W. S. Ishak, K. H. Hahn, B. L. Booth, C. Muheller, A. A. J. Levi, R. Craig, “Optical interconnects: the POLO project,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE2400, 214–221 (1995).
[CrossRef]

Ebeling, K. J.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[CrossRef]

Ebeling, L. J.

P. Schnitzer, U. Fiedler, M. Grabherr, C. Jung, G. Reiner, W. Zich, L. J. Ebeling, “Bias-free 1 Gbit/s data transmission using singlemode GaAs VCSELs at λ = 835 nm,” Electron. Lett. 32, 2145–2146 (1996).
[CrossRef]

Esener, S. C.

Feldblum, A. Y.

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Optics Commun. 109, 328–337 (1994).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Feldman, M. R.

Fiedler, U.

P. Schnitzer, U. Fiedler, M. Grabherr, C. Jung, G. Reiner, W. Zich, L. J. Ebeling, “Bias-free 1 Gbit/s data transmission using singlemode GaAs VCSELs at λ = 835 nm,” Electron. Lett. 32, 2145–2146 (1996).
[CrossRef]

Floyd, P. D.

B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, L. A. Coldren, “High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers,” IEEE Photon. Technol. Lett. 9, 11–13 (1997).
[CrossRef]

B. J. Thibeault, E. R. Hegblom, P. D. Floyd, R. Naone, Y. Akulova, L. A. Coldren, “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 Å) oxide aperture,” IEEE Photon. Technol. Lett. 8, 593–595 (1996).
[CrossRef]

Foley, B. M.

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

Geib, K. M.

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, H. C. Chui , “Selectively oxidized vertical-cavity lasers,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting 1995 (IEEE, New York, 1995), pp. 412–413, paper SCL 14.1.

Grabherr, M.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[CrossRef]

P. Schnitzer, U. Fiedler, M. Grabherr, C. Jung, G. Reiner, W. Zich, L. J. Ebeling, “Bias-free 1 Gbit/s data transmission using singlemode GaAs VCSELs at λ = 835 nm,” Electron. Lett. 32, 2145–2146 (1996).
[CrossRef]

Guest, C. C.

Hahn, K. H.

W. S. Ishak, K. H. Hahn, B. L. Booth, C. Muheller, A. A. J. Levi, R. Craig, “Optical interconnects: the POLO project,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE2400, 214–221 (1995).
[CrossRef]

Hartman, D. H.

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

Hegblom, E. R.

B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, L. A. Coldren, “High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers,” IEEE Photon. Technol. Lett. 9, 11–13 (1997).
[CrossRef]

B. J. Thibeault, E. R. Hegblom, P. D. Floyd, R. Naone, Y. Akulova, L. A. Coldren, “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 Å) oxide aperture,” IEEE Photon. Technol. Lett. 8, 593–595 (1996).
[CrossRef]

E. R. Hegblom, D. I. Babic, B. J. Thibeault, L. A. Coldren, “Estimation of scattering losses in dielectrically apertured vertical cavity lasers,” Appl. Phys. Lett. 68, 1757–1759 (1996).
[CrossRef]

Hinton, H. S.

Hsiao, W.

Hu, E. L.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
[CrossRef]

Ishak, W. S.

W. S. Ishak, K. H. Hahn, B. L. Booth, C. Muheller, A. A. J. Levi, R. Craig, “Optical interconnects: the POLO project,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE2400, 214–221 (1995).
[CrossRef]

Jäger, R.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[CrossRef]

Jahns, J.

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Optics Commun. 109, 328–337 (1994).
[CrossRef]

Jung, C.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[CrossRef]

P. Schnitzer, U. Fiedler, M. Grabherr, C. Jung, G. Reiner, W. Zich, L. J. Ebeling, “Bias-free 1 Gbit/s data transmission using singlemode GaAs VCSELs at λ = 835 nm,” Electron. Lett. 32, 2145–2146 (1996).
[CrossRef]

Kabal, D.

Kim, N. H.

Kuo, S. M.

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

Lear, K. L.

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, H. C. Chui , “Selectively oxidized vertical-cavity lasers,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting 1995 (IEEE, New York, 1995), pp. 412–413, paper SCL 14.1.

Lebby, M.

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

Lee, H. C.

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

Lee, S. H.

Lee, Y. C.

V. N. Morozov, Y. C. Lee, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems and packaging,” Opt. Eng. 35, 2034–2044 (1996).
[CrossRef]

Levi, A. A. J.

W. S. Ishak, K. H. Hahn, B. L. Booth, C. Muheller, A. A. J. Levi, R. Craig, “Optical interconnects: the POLO project,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE2400, 214–221 (1995).
[CrossRef]

Li, Y.

Y. Li, T. Wang, R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronics crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
[CrossRef] [PubMed]

Linke, R. A.

Y. Li, T. Wang, R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronics crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
[CrossRef] [PubMed]

Liu, Y. S.

Long, Shieh Chan

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

McLaren, T. S.

V. N. Morozov, Y. C. Lee, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems and packaging,” Opt. Eng. 35, 2034–2044 (1996).
[CrossRef]

Mersereau, K. O.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Michalzik, R.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[CrossRef]

Morozov, V. N.

V. N. Morozov, Y. C. Lee, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems and packaging,” Opt. Eng. 35, 2034–2044 (1996).
[CrossRef]

Muheller, C.

W. S. Ishak, K. H. Hahn, B. L. Booth, C. Muheller, A. A. J. Levi, R. Craig, “Optical interconnects: the POLO project,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE2400, 214–221 (1995).
[CrossRef]

Naone, R.

B. J. Thibeault, E. R. Hegblom, P. D. Floyd, R. Naone, Y. Akulova, L. A. Coldren, “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 Å) oxide aperture,” IEEE Photon. Technol. Lett. 8, 593–595 (1996).
[CrossRef]

Neff, J. A.

V. N. Morozov, Y. C. Lee, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems and packaging,” Opt. Eng. 35, 2034–2044 (1996).
[CrossRef]

Nijander, C. R.

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Optics Commun. 109, 328–337 (1994).
[CrossRef]

O’Brien, D.

V. N. Morozov, Y. C. Lee, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems and packaging,” Opt. Eng. 35, 2034–2044 (1996).
[CrossRef]

Otazo, M. R.

Pavlasek, D.

Plant, D. V.

Reiner, G.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[CrossRef]

P. Schnitzer, U. Fiedler, M. Grabherr, C. Jung, G. Reiner, W. Zich, L. J. Ebeling, “Bias-free 1 Gbit/s data transmission using singlemode GaAs VCSELs at λ = 835 nm,” Electron. Lett. 32, 2145–2146 (1996).
[CrossRef]

Robertson, B.

Robertson, W. M.

Robinson, G. D.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Sauer, F.

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Optics Commun. 109, 328–337 (1994).
[CrossRef]

Schneider, R. P.

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, H. C. Chui , “Selectively oxidized vertical-cavity lasers,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting 1995 (IEEE, New York, 1995), pp. 412–413, paper SCL 14.1.

Schnitzer, P.

P. Schnitzer, U. Fiedler, M. Grabherr, C. Jung, G. Reiner, W. Zich, L. J. Ebeling, “Bias-free 1 Gbit/s data transmission using singlemode GaAs VCSELs at λ = 835 nm,” Electron. Lett. 32, 2145–2146 (1996).
[CrossRef]

Schwartz, D. B.

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

Shang, A. Z.

Shook, S. G.

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

Simons, J.

Song, K.

Sowada, D.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[CrossRef]

Strzelecka, E.

B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, L. A. Coldren, “High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers,” IEEE Photon. Technol. Lett. 9, 11–13 (1997).
[CrossRef]

Strzelecka, E. M.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Tell, B.

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Optics Commun. 109, 328–337 (1994).
[CrossRef]

Thibeault, B. J.

B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, L. A. Coldren, “High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers,” IEEE Photon. Technol. Lett. 9, 11–13 (1997).
[CrossRef]

B. J. Thibeault, E. R. Hegblom, P. D. Floyd, R. Naone, Y. Akulova, L. A. Coldren, “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 Å) oxide aperture,” IEEE Photon. Technol. Lett. 8, 593–595 (1996).
[CrossRef]

E. R. Hegblom, D. I. Babic, B. J. Thibeault, L. A. Coldren, “Estimation of scattering losses in dielectrically apertured vertical cavity lasers,” Appl. Phys. Lett. 68, 1757–1759 (1996).
[CrossRef]

Thompson, D. A.

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Townsend, W. P.

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Optics Commun. 109, 328–337 (1994).
[CrossRef]

Wang, T.

Y. Li, T. Wang, R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronics crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
[CrossRef] [PubMed]

Webb, B.

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

Weigl, B.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[CrossRef]

Zhou, H.

V. N. Morozov, Y. C. Lee, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems and packaging,” Opt. Eng. 35, 2034–2044 (1996).
[CrossRef]

Zich, W.

P. Schnitzer, U. Fiedler, M. Grabherr, C. Jung, G. Reiner, W. Zich, L. J. Ebeling, “Bias-free 1 Gbit/s data transmission using singlemode GaAs VCSELs at λ = 835 nm,” Electron. Lett. 32, 2145–2146 (1996).
[CrossRef]

Appl. Opt. (1)

Y. Li, T. Wang, R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronics crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

E. R. Hegblom, D. I. Babic, B. J. Thibeault, L. A. Coldren, “Estimation of scattering losses in dielectrically apertured vertical cavity lasers,” Appl. Phys. Lett. 68, 1757–1759 (1996).
[CrossRef]

Electron. Lett. (1)

P. Schnitzer, U. Fiedler, M. Grabherr, C. Jung, G. Reiner, W. Zich, L. J. Ebeling, “Bias-free 1 Gbit/s data transmission using singlemode GaAs VCSELs at λ = 835 nm,” Electron. Lett. 32, 2145–2146 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, L. A. Coldren, “High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers,” IEEE Photon. Technol. Lett. 9, 11–13 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. J. Thibeault, E. R. Hegblom, P. D. Floyd, R. Naone, Y. Akulova, L. A. Coldren, “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 Å) oxide aperture,” IEEE Photon. Technol. Lett. 8, 593–595 (1996).
[CrossRef]

IEEE Trans. Components Packag. Manuf. (1)

D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996).
[CrossRef]

Microelectron. Eng. (1)

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
[CrossRef]

Opt. Eng. (1)

V. N. Morozov, Y. C. Lee, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems and packaging,” Opt. Eng. 35, 2034–2044 (1996).
[CrossRef]

Opt. Quantum Electron. (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Optics Commun. (1)

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Optics Commun. 109, 328–337 (1994).
[CrossRef]

Other (4)

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), pp. 214–217, 235.

W. S. Ishak, K. H. Hahn, B. L. Booth, C. Muheller, A. A. J. Levi, R. Craig, “Optical interconnects: the POLO project,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE2400, 214–221 (1995).
[CrossRef]

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, H. C. Chui , “Selectively oxidized vertical-cavity lasers,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting 1995 (IEEE, New York, 1995), pp. 412–413, paper SCL 14.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Block diagram of the free-space optical link.

Fig. 2
Fig. 2

Schematic of the free-space optical link.

Fig. 3
Fig. 3

Characteristics of the oxide-apertured VCSEL’s used in the optical link: (a) Power and wall-plug efficiency versus the current. (b) Spectral characteristics. AR, antireflection.

Fig. 4
Fig. 4

Beam profiles of the microlensed VCSEL.

Fig. 5
Fig. 5

Schematic of the optical link: (a) Cross section of a flip-chip bonded VCSEL array. (b) Scanning electron micrograph of a flip-chip bonded VCSEL array. (c) Side view of the test fixtures for the free-space optical link.

Fig. 6
Fig. 6

Simulated insertion loss and cross talk versus the lateral displacement for detector sizes of 3, 7, 15, and 30 μm at an interconnect length of L = 5 mm.

Fig. 7
Fig. 7

Insertion loss and cross talk versus the lateral displacement with a 15-μm detector: (a) Simulated. (b) Experimental.

Fig. 8
Fig. 8

Insertion loss and cross talk versus the interconnect length: (a) Simulated. (b) Experimental.

Fig. 9
Fig. 9

(a) Block diagram of the link simulator. (b) Laser electrical model used in the link simulator.

Fig. 10
Fig. 10

Waveforms of the simulated (a) laser current, (b) laser optical power, and (c) filtered receiver voltage. (d) The measured waveform of the unfiltered receiver voltage at 2.5 Gbits/s. The bit patterns are different for the simulated and the experimental waveforms.

Fig. 11
Fig. 11

Eye diagrams of the (a) simulated and (b) experimental free-space links at 2.5 Gbits/s obtained with a 6-GHz bandwidth receiver.

Fig. 12
Fig. 12

Eye diagram of data transmission through the free-space system at 200 Mbits/s.

Fig. 13
Fig. 13

Measured BER and insertion loss versus the lateral displacement for the free-space interconnect at 500 Mbits/s.

Fig. 14
Fig. 14

Eye diagram of data coupled directly through a multimode fiber at 3 Gbits/s by a 6-GHz bandwidth receiver.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Simulation of the Free-Space Optical Link

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L = L o = 2 π w a 2 λ ,
w tl = w rl = 2 w a ,
R = L s 2 + z o 2 L s + z o n - 1 n ,
i ω i 0 = 1 1 - exp - α L abs 1 - exp - j ω τ e exp - α L abs j ω τ e + α L abs + exp - α L abs exp - j ω τ e - 1 j ω τ e + 1 - exp - j ω τ h j ω τ h + exp - α L abs 1 - exp α L abs exp - j ω τ h α L - j ω τ h ,

Metrics