Abstract

The multiphoton fluorescence excitation observed in a continuous-wave (cw) single-beam gradient force optical trap (optical tweezers) is reported for latex beads labeled with a yellow-green fluorescent dye (BODIPY). The fluorescence emission spectra of the yellow-green beads trapped and excited by the same 1064-nm laser light are identical to the spectra excited by the 365-nm UV light. The influence of the numerical aperture of the objective on the slope of the log–log power-dependence has been demonstrated for BODIPY–Oil solution under cw and pulsed-laser conditions. The possibility that three-photon excitation process occurs is discussed within the context of a dog-bone saturation model. Other possibilities for the observed fluorescence excitation have been discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  3. K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    [CrossRef] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of single cells using infrared laser beams,” Ber. Busenges. Phys. Chem. 93, 254–260 (1989).
    [CrossRef]
  5. S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley-Liss, New York, 1990), pp. 372–402.
  6. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68, 2137–2144 (1995).
    [CrossRef] [PubMed]
  7. Y. Liu, G. J. Sonek, M. W. Berns, K. Konig, B. J. Tromberg, “Two-photon fluorescence excitation in continuous-wave infrared optical tweezers,” Opt. Lett. 20, 2246–2248 (1995).
    [CrossRef] [PubMed]
  8. K. Konig, H. Liang, M. W. Berns, B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996).
    [CrossRef] [PubMed]
  9. P. E. Hanninen, E. Soini, S. W. Hell, “Continuous wave excitation two-photon fluorescence microscopy,” J. Microsc. 176, 222–225 (1994).
    [CrossRef]
  10. E. Florin, J. K. H. Horber, E. H. K. Stelzer, “High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd:YAG laser,” Appl. Phys. Lett. 69, 446–448 (1996).
    [CrossRef]
  11. C. Xu, J. Guild, W. W. Webb, W. Denk, “Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation,” Opt. Lett. 20, 2372–2374 (1995).
    [CrossRef] [PubMed]
  12. C. Xu, W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
    [CrossRef]
  13. S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).
  14. J. D. Bhawalkar, G. S. He, P. N. Prasad, “Three-photon induced upconverted fluorescence from an organic compound: application to optical power limiting,” Opt. Commun. 119, 587–590 (1995).
    [CrossRef]
  15. I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:Sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
    [CrossRef]
  16. I. Gryczynski, H. Szmacinski, J. R. Lakowicz, “On the possibility of calcium imaging using Indo-1 with three-photon excitation,” Photonchem. Photonbiol. 62, 804–808 (1995).
    [CrossRef]
  17. A. P. Davey, E. Bourdin, F. Henari, W. J. Blau, “Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion,” Appl. Phys. Lett. 67, 884–885 (1995).
    [CrossRef]
  18. J. B. Shear, E. B. Brown, W. W. Webb, “Multiphoton-excited fluorescence of fluorogen-labeled neurotransmitters,” Anal. Chem. 68, 1778–1783 (1996).
    [CrossRef] [PubMed]
  19. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  20. S. H. Lin, Y. Fujimura, H. J. Neusser, E. W. Schlag, Multiphoton Spectroscopy of Molecules (Academic, Harcourt Brace Jovanovich, San Diego, Calif., 1984).
  21. H. C. Kang, R. P. Haugland, P. J. Fisher, F. G. Prendergast, “Spectral properties of 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromenthen-1,1′-borondifuloride complex (BODIPY), its sodium salt, and protein derivatives,” in New Technologies in Cytometry, G. C. Salzman, ed., Proc. SPIE1063, 68–73 (1989).
    [CrossRef]
  22. F. H. M. Faisal, Theory of Multiphoton Processes (Plenum, New York, 1986).
  23. S. Speiser, J. Jortner, “The 3/2 power law for high order multiphoton processes,” Chem. Phys. Lett. 44, 399–403 (1976).
    [CrossRef]
  24. S. Speiser, S. Skimel, “On the possibility of observing photochemical reactions induced by multiphoton absorption,” Chem. Phys. Lett. 7, 19–22 (1970).
    [CrossRef]
  25. C. Schwan, A. Penzkofer, N. J. Marx, K. H. Drexhage, “Phased-matched third-harmonic generation of Nd:glass-laser picosecond pulses in a new cyanine-dye solution,” Appl. Phys. B 57, 203–211 (1993).
    [CrossRef]
  26. W. Leupacher, A. Penzkofer, B. Runde, K. H. Drexhage, “Efficient phase-matched third-harmonic light generation in Hexafluoroisopropanol solutions of a pyrimidonecarbocyanine dye,” Appl. Phys. B 44, 133–140 (1987).
    [CrossRef]
  27. A. Penzkofer, W. Leupacher, “Experimental and theoretical investigation of third-harmonic generation in phase-matched dye solutions,” Opt. Quantum Electron. 20, 227–256 (1988).
    [CrossRef]
  28. P. P. Bey, J. F. Giuliani, H. Rabin, “Enhanced optical third-harmonic generation by coupled nonlinear absorption,” IEEE J. Quantum Electron. QE-7, 86–88 (1971).
    [CrossRef]
  29. J. C. Diels, F. P. Chafer, “Phase-matched third-harmonic generation in dye solutions,” Appl. Phys. 5, 197–202 (1974).
    [CrossRef]
  30. R. K. Chang, L. K. Galbraith, “Optical third-harmonic generation in dye solutions,” Phys. Rev. 171, 993–996 (1968).
    [CrossRef]
  31. C. Zander, K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995).
    [CrossRef]
  32. A. A. Ruth, F. J. O’Keeffe, M. W. D. Mansfield, R. P. Brint, “The resonance-enhanced multiphoton excitation spectrum of jet-cooled 4-H-1-benzopyrane-4-thione,” Chem. Phys. Lett. 264, 605–613 (1997).
    [CrossRef]
  33. V. V. Sapunov, “Kinetics of triplet–triplet annihilation in liquid solutions,” Opt. Spectrosc. 79, 558–563 (1995).
  34. B. Nickel, H. E. Wilhelm, A. A. Ruth, “Anti-Smoluchowski time dependence of the delayed fluorescence from anthracence in viscous solution due to triplet–triplet annihilation. Effect of Forster energy transfer S1 + T1 → S0 + Tn on the initial spatial distribution of molecules in T1,” Chem. Phys. Lett. 188, 267–287 (1994).

1997

A. A. Ruth, F. J. O’Keeffe, M. W. D. Mansfield, R. P. Brint, “The resonance-enhanced multiphoton excitation spectrum of jet-cooled 4-H-1-benzopyrane-4-thione,” Chem. Phys. Lett. 264, 605–613 (1997).
[CrossRef]

1996

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).

J. B. Shear, E. B. Brown, W. W. Webb, “Multiphoton-excited fluorescence of fluorogen-labeled neurotransmitters,” Anal. Chem. 68, 1778–1783 (1996).
[CrossRef] [PubMed]

E. Florin, J. K. H. Horber, E. H. K. Stelzer, “High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd:YAG laser,” Appl. Phys. Lett. 69, 446–448 (1996).
[CrossRef]

C. Xu, W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
[CrossRef]

K. Konig, H. Liang, M. W. Berns, B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996).
[CrossRef] [PubMed]

1995

C. Xu, J. Guild, W. W. Webb, W. Denk, “Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation,” Opt. Lett. 20, 2372–2374 (1995).
[CrossRef] [PubMed]

Y. Liu, G. J. Sonek, M. W. Berns, K. Konig, B. J. Tromberg, “Two-photon fluorescence excitation in continuous-wave infrared optical tweezers,” Opt. Lett. 20, 2246–2248 (1995).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

C. Zander, K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995).
[CrossRef]

J. D. Bhawalkar, G. S. He, P. N. Prasad, “Three-photon induced upconverted fluorescence from an organic compound: application to optical power limiting,” Opt. Commun. 119, 587–590 (1995).
[CrossRef]

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:Sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

I. Gryczynski, H. Szmacinski, J. R. Lakowicz, “On the possibility of calcium imaging using Indo-1 with three-photon excitation,” Photonchem. Photonbiol. 62, 804–808 (1995).
[CrossRef]

A. P. Davey, E. Bourdin, F. Henari, W. J. Blau, “Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion,” Appl. Phys. Lett. 67, 884–885 (1995).
[CrossRef]

V. V. Sapunov, “Kinetics of triplet–triplet annihilation in liquid solutions,” Opt. Spectrosc. 79, 558–563 (1995).

1994

B. Nickel, H. E. Wilhelm, A. A. Ruth, “Anti-Smoluchowski time dependence of the delayed fluorescence from anthracence in viscous solution due to triplet–triplet annihilation. Effect of Forster energy transfer S1 + T1 → S0 + Tn on the initial spatial distribution of molecules in T1,” Chem. Phys. Lett. 188, 267–287 (1994).

K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

P. E. Hanninen, E. Soini, S. W. Hell, “Continuous wave excitation two-photon fluorescence microscopy,” J. Microsc. 176, 222–225 (1994).
[CrossRef]

1993

C. Schwan, A. Penzkofer, N. J. Marx, K. H. Drexhage, “Phased-matched third-harmonic generation of Nd:glass-laser picosecond pulses in a new cyanine-dye solution,” Appl. Phys. B 57, 203–211 (1993).
[CrossRef]

1989

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of single cells using infrared laser beams,” Ber. Busenges. Phys. Chem. 93, 254–260 (1989).
[CrossRef]

1988

A. Penzkofer, W. Leupacher, “Experimental and theoretical investigation of third-harmonic generation in phase-matched dye solutions,” Opt. Quantum Electron. 20, 227–256 (1988).
[CrossRef]

1987

W. Leupacher, A. Penzkofer, B. Runde, K. H. Drexhage, “Efficient phase-matched third-harmonic light generation in Hexafluoroisopropanol solutions of a pyrimidonecarbocyanine dye,” Appl. Phys. B 44, 133–140 (1987).
[CrossRef]

1986

1976

S. Speiser, J. Jortner, “The 3/2 power law for high order multiphoton processes,” Chem. Phys. Lett. 44, 399–403 (1976).
[CrossRef]

1974

J. C. Diels, F. P. Chafer, “Phase-matched third-harmonic generation in dye solutions,” Appl. Phys. 5, 197–202 (1974).
[CrossRef]

1971

P. P. Bey, J. F. Giuliani, H. Rabin, “Enhanced optical third-harmonic generation by coupled nonlinear absorption,” IEEE J. Quantum Electron. QE-7, 86–88 (1971).
[CrossRef]

1970

S. Speiser, S. Skimel, “On the possibility of observing photochemical reactions induced by multiphoton absorption,” Chem. Phys. Lett. 7, 19–22 (1970).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

1968

R. K. Chang, L. K. Galbraith, “Optical third-harmonic generation in dye solutions,” Phys. Rev. 171, 993–996 (1968).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of single cells using infrared laser beams,” Ber. Busenges. Phys. Chem. 93, 254–260 (1989).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Bahlmann, K.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).

Berns, M. W.

Bey, P. P.

P. P. Bey, J. F. Giuliani, H. Rabin, “Enhanced optical third-harmonic generation by coupled nonlinear absorption,” IEEE J. Quantum Electron. QE-7, 86–88 (1971).
[CrossRef]

Bhawalkar, J. D.

J. D. Bhawalkar, G. S. He, P. N. Prasad, “Three-photon induced upconverted fluorescence from an organic compound: application to optical power limiting,” Opt. Commun. 119, 587–590 (1995).
[CrossRef]

Bjorkholm, J. E.

Blau, W. J.

A. P. Davey, E. Bourdin, F. Henari, W. J. Blau, “Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion,” Appl. Phys. Lett. 67, 884–885 (1995).
[CrossRef]

Block, S. M.

K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley-Liss, New York, 1990), pp. 372–402.

Bourdin, E.

A. P. Davey, E. Bourdin, F. Henari, W. J. Blau, “Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion,” Appl. Phys. Lett. 67, 884–885 (1995).
[CrossRef]

Brint, R. P.

A. A. Ruth, F. J. O’Keeffe, M. W. D. Mansfield, R. P. Brint, “The resonance-enhanced multiphoton excitation spectrum of jet-cooled 4-H-1-benzopyrane-4-thione,” Chem. Phys. Lett. 264, 605–613 (1997).
[CrossRef]

Brown, E. B.

J. B. Shear, E. B. Brown, W. W. Webb, “Multiphoton-excited fluorescence of fluorogen-labeled neurotransmitters,” Anal. Chem. 68, 1778–1783 (1996).
[CrossRef] [PubMed]

Chafer, F. P.

J. C. Diels, F. P. Chafer, “Phase-matched third-harmonic generation in dye solutions,” Appl. Phys. 5, 197–202 (1974).
[CrossRef]

Chang, R. K.

R. K. Chang, L. K. Galbraith, “Optical third-harmonic generation in dye solutions,” Phys. Rev. 171, 993–996 (1968).
[CrossRef]

Chapman, C. F.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

Cheng, D. K.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

Chu, S.

Davey, A. P.

A. P. Davey, E. Bourdin, F. Henari, W. J. Blau, “Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion,” Appl. Phys. Lett. 67, 884–885 (1995).
[CrossRef]

Denk, W.

Diels, J. C.

J. C. Diels, F. P. Chafer, “Phase-matched third-harmonic generation in dye solutions,” Appl. Phys. 5, 197–202 (1974).
[CrossRef]

Drexhage, K. H.

C. Zander, K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995).
[CrossRef]

C. Schwan, A. Penzkofer, N. J. Marx, K. H. Drexhage, “Phased-matched third-harmonic generation of Nd:glass-laser picosecond pulses in a new cyanine-dye solution,” Appl. Phys. B 57, 203–211 (1993).
[CrossRef]

W. Leupacher, A. Penzkofer, B. Runde, K. H. Drexhage, “Efficient phase-matched third-harmonic light generation in Hexafluoroisopropanol solutions of a pyrimidonecarbocyanine dye,” Appl. Phys. B 44, 133–140 (1987).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of single cells using infrared laser beams,” Ber. Busenges. Phys. Chem. 93, 254–260 (1989).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Faisal, F. H. M.

F. H. M. Faisal, Theory of Multiphoton Processes (Plenum, New York, 1986).

Fisher, P. J.

H. C. Kang, R. P. Haugland, P. J. Fisher, F. G. Prendergast, “Spectral properties of 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromenthen-1,1′-borondifuloride complex (BODIPY), its sodium salt, and protein derivatives,” in New Technologies in Cytometry, G. C. Salzman, ed., Proc. SPIE1063, 68–73 (1989).
[CrossRef]

Florin, E.

E. Florin, J. K. H. Horber, E. H. K. Stelzer, “High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd:YAG laser,” Appl. Phys. Lett. 69, 446–448 (1996).
[CrossRef]

Fujimura, Y.

S. H. Lin, Y. Fujimura, H. J. Neusser, E. W. Schlag, Multiphoton Spectroscopy of Molecules (Academic, Harcourt Brace Jovanovich, San Diego, Calif., 1984).

Galbraith, L. K.

R. K. Chang, L. K. Galbraith, “Optical third-harmonic generation in dye solutions,” Phys. Rev. 171, 993–996 (1968).
[CrossRef]

Giuliani, J. F.

P. P. Bey, J. F. Giuliani, H. Rabin, “Enhanced optical third-harmonic generation by coupled nonlinear absorption,” IEEE J. Quantum Electron. QE-7, 86–88 (1971).
[CrossRef]

Grycznski, I.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).

Gryczynski, I.

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:Sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

I. Gryczynski, H. Szmacinski, J. R. Lakowicz, “On the possibility of calcium imaging using Indo-1 with three-photon excitation,” Photonchem. Photonbiol. 62, 804–808 (1995).
[CrossRef]

Guild, J.

Hanninen, P. E.

P. E. Hanninen, E. Soini, S. W. Hell, “Continuous wave excitation two-photon fluorescence microscopy,” J. Microsc. 176, 222–225 (1994).
[CrossRef]

Haugland, R. P.

H. C. Kang, R. P. Haugland, P. J. Fisher, F. G. Prendergast, “Spectral properties of 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromenthen-1,1′-borondifuloride complex (BODIPY), its sodium salt, and protein derivatives,” in New Technologies in Cytometry, G. C. Salzman, ed., Proc. SPIE1063, 68–73 (1989).
[CrossRef]

He, G. S.

J. D. Bhawalkar, G. S. He, P. N. Prasad, “Three-photon induced upconverted fluorescence from an organic compound: application to optical power limiting,” Opt. Commun. 119, 587–590 (1995).
[CrossRef]

Hell, S. W.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).

P. E. Hanninen, E. Soini, S. W. Hell, “Continuous wave excitation two-photon fluorescence microscopy,” J. Microsc. 176, 222–225 (1994).
[CrossRef]

Henari, F.

A. P. Davey, E. Bourdin, F. Henari, W. J. Blau, “Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion,” Appl. Phys. Lett. 67, 884–885 (1995).
[CrossRef]

Horber, J. K. H.

E. Florin, J. K. H. Horber, E. H. K. Stelzer, “High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd:YAG laser,” Appl. Phys. Lett. 69, 446–448 (1996).
[CrossRef]

Jortner, J.

S. Speiser, J. Jortner, “The 3/2 power law for high order multiphoton processes,” Chem. Phys. Lett. 44, 399–403 (1976).
[CrossRef]

Kang, H. C.

H. C. Kang, R. P. Haugland, P. J. Fisher, F. G. Prendergast, “Spectral properties of 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromenthen-1,1′-borondifuloride complex (BODIPY), its sodium salt, and protein derivatives,” in New Technologies in Cytometry, G. C. Salzman, ed., Proc. SPIE1063, 68–73 (1989).
[CrossRef]

Konig, K.

Lakowicz, J. R.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:Sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

I. Gryczynski, H. Szmacinski, J. R. Lakowicz, “On the possibility of calcium imaging using Indo-1 with three-photon excitation,” Photonchem. Photonbiol. 62, 804–808 (1995).
[CrossRef]

Leupacher, W.

A. Penzkofer, W. Leupacher, “Experimental and theoretical investigation of third-harmonic generation in phase-matched dye solutions,” Opt. Quantum Electron. 20, 227–256 (1988).
[CrossRef]

W. Leupacher, A. Penzkofer, B. Runde, K. H. Drexhage, “Efficient phase-matched third-harmonic light generation in Hexafluoroisopropanol solutions of a pyrimidonecarbocyanine dye,” Appl. Phys. B 44, 133–140 (1987).
[CrossRef]

Liang, H.

Lin, S. H.

S. H. Lin, Y. Fujimura, H. J. Neusser, E. W. Schlag, Multiphoton Spectroscopy of Molecules (Academic, Harcourt Brace Jovanovich, San Diego, Calif., 1984).

Liu, Y.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

Y. Liu, G. J. Sonek, M. W. Berns, K. Konig, B. J. Tromberg, “Two-photon fluorescence excitation in continuous-wave infrared optical tweezers,” Opt. Lett. 20, 2246–2248 (1995).
[CrossRef] [PubMed]

Malak, H.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:Sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

Mansfield, M. W. D.

A. A. Ruth, F. J. O’Keeffe, M. W. D. Mansfield, R. P. Brint, “The resonance-enhanced multiphoton excitation spectrum of jet-cooled 4-H-1-benzopyrane-4-thione,” Chem. Phys. Lett. 264, 605–613 (1997).
[CrossRef]

Marx, N. J.

C. Schwan, A. Penzkofer, N. J. Marx, K. H. Drexhage, “Phased-matched third-harmonic generation of Nd:glass-laser picosecond pulses in a new cyanine-dye solution,” Appl. Phys. B 57, 203–211 (1993).
[CrossRef]

Neusser, H. J.

S. H. Lin, Y. Fujimura, H. J. Neusser, E. W. Schlag, Multiphoton Spectroscopy of Molecules (Academic, Harcourt Brace Jovanovich, San Diego, Calif., 1984).

Nickel, B.

B. Nickel, H. E. Wilhelm, A. A. Ruth, “Anti-Smoluchowski time dependence of the delayed fluorescence from anthracence in viscous solution due to triplet–triplet annihilation. Effect of Forster energy transfer S1 + T1 → S0 + Tn on the initial spatial distribution of molecules in T1,” Chem. Phys. Lett. 188, 267–287 (1994).

O’Keeffe, F. J.

A. A. Ruth, F. J. O’Keeffe, M. W. D. Mansfield, R. P. Brint, “The resonance-enhanced multiphoton excitation spectrum of jet-cooled 4-H-1-benzopyrane-4-thione,” Chem. Phys. Lett. 264, 605–613 (1997).
[CrossRef]

Penzkofer, A.

C. Schwan, A. Penzkofer, N. J. Marx, K. H. Drexhage, “Phased-matched third-harmonic generation of Nd:glass-laser picosecond pulses in a new cyanine-dye solution,” Appl. Phys. B 57, 203–211 (1993).
[CrossRef]

A. Penzkofer, W. Leupacher, “Experimental and theoretical investigation of third-harmonic generation in phase-matched dye solutions,” Opt. Quantum Electron. 20, 227–256 (1988).
[CrossRef]

W. Leupacher, A. Penzkofer, B. Runde, K. H. Drexhage, “Efficient phase-matched third-harmonic light generation in Hexafluoroisopropanol solutions of a pyrimidonecarbocyanine dye,” Appl. Phys. B 44, 133–140 (1987).
[CrossRef]

Prasad, P. N.

J. D. Bhawalkar, G. S. He, P. N. Prasad, “Three-photon induced upconverted fluorescence from an organic compound: application to optical power limiting,” Opt. Commun. 119, 587–590 (1995).
[CrossRef]

Prendergast, F. G.

H. C. Kang, R. P. Haugland, P. J. Fisher, F. G. Prendergast, “Spectral properties of 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromenthen-1,1′-borondifuloride complex (BODIPY), its sodium salt, and protein derivatives,” in New Technologies in Cytometry, G. C. Salzman, ed., Proc. SPIE1063, 68–73 (1989).
[CrossRef]

Rabin, H.

P. P. Bey, J. F. Giuliani, H. Rabin, “Enhanced optical third-harmonic generation by coupled nonlinear absorption,” IEEE J. Quantum Electron. QE-7, 86–88 (1971).
[CrossRef]

Runde, B.

W. Leupacher, A. Penzkofer, B. Runde, K. H. Drexhage, “Efficient phase-matched third-harmonic light generation in Hexafluoroisopropanol solutions of a pyrimidonecarbocyanine dye,” Appl. Phys. B 44, 133–140 (1987).
[CrossRef]

Ruth, A. A.

A. A. Ruth, F. J. O’Keeffe, M. W. D. Mansfield, R. P. Brint, “The resonance-enhanced multiphoton excitation spectrum of jet-cooled 4-H-1-benzopyrane-4-thione,” Chem. Phys. Lett. 264, 605–613 (1997).
[CrossRef]

B. Nickel, H. E. Wilhelm, A. A. Ruth, “Anti-Smoluchowski time dependence of the delayed fluorescence from anthracence in viscous solution due to triplet–triplet annihilation. Effect of Forster energy transfer S1 + T1 → S0 + Tn on the initial spatial distribution of molecules in T1,” Chem. Phys. Lett. 188, 267–287 (1994).

Sapunov, V. V.

V. V. Sapunov, “Kinetics of triplet–triplet annihilation in liquid solutions,” Opt. Spectrosc. 79, 558–563 (1995).

Schlag, E. W.

S. H. Lin, Y. Fujimura, H. J. Neusser, E. W. Schlag, Multiphoton Spectroscopy of Molecules (Academic, Harcourt Brace Jovanovich, San Diego, Calif., 1984).

Schrader, M.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).

Schwan, C.

C. Schwan, A. Penzkofer, N. J. Marx, K. H. Drexhage, “Phased-matched third-harmonic generation of Nd:glass-laser picosecond pulses in a new cyanine-dye solution,” Appl. Phys. B 57, 203–211 (1993).
[CrossRef]

Shear, J. B.

J. B. Shear, E. B. Brown, W. W. Webb, “Multiphoton-excited fluorescence of fluorogen-labeled neurotransmitters,” Anal. Chem. 68, 1778–1783 (1996).
[CrossRef] [PubMed]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Skimel, S.

S. Speiser, S. Skimel, “On the possibility of observing photochemical reactions induced by multiphoton absorption,” Chem. Phys. Lett. 7, 19–22 (1970).
[CrossRef]

Soini, A.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).

Soini, E.

P. E. Hanninen, E. Soini, S. W. Hell, “Continuous wave excitation two-photon fluorescence microscopy,” J. Microsc. 176, 222–225 (1994).
[CrossRef]

Sonek, G. J.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

Y. Liu, G. J. Sonek, M. W. Berns, K. Konig, B. J. Tromberg, “Two-photon fluorescence excitation in continuous-wave infrared optical tweezers,” Opt. Lett. 20, 2246–2248 (1995).
[CrossRef] [PubMed]

Speiser, S.

S. Speiser, J. Jortner, “The 3/2 power law for high order multiphoton processes,” Chem. Phys. Lett. 44, 399–403 (1976).
[CrossRef]

S. Speiser, S. Skimel, “On the possibility of observing photochemical reactions induced by multiphoton absorption,” Chem. Phys. Lett. 7, 19–22 (1970).
[CrossRef]

Stelzer, E. H. K.

E. Florin, J. K. H. Horber, E. H. K. Stelzer, “High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd:YAG laser,” Appl. Phys. Lett. 69, 446–448 (1996).
[CrossRef]

Svoboda, K.

K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Szmacinski, H.

I. Gryczynski, H. Szmacinski, J. R. Lakowicz, “On the possibility of calcium imaging using Indo-1 with three-photon excitation,” Photonchem. Photonbiol. 62, 804–808 (1995).
[CrossRef]

Tromberg, B. J.

Webb, W. W.

Wilhelm, H. E.

B. Nickel, H. E. Wilhelm, A. A. Ruth, “Anti-Smoluchowski time dependence of the delayed fluorescence from anthracence in viscous solution due to triplet–triplet annihilation. Effect of Forster energy transfer S1 + T1 → S0 + Tn on the initial spatial distribution of molecules in T1,” Chem. Phys. Lett. 188, 267–287 (1994).

Xu, C.

Zander, C.

C. Zander, K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995).
[CrossRef]

Adv. Photochem.

C. Zander, K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995).
[CrossRef]

Anal. Chem.

J. B. Shear, E. B. Brown, W. W. Webb, “Multiphoton-excited fluorescence of fluorogen-labeled neurotransmitters,” Anal. Chem. 68, 1778–1783 (1996).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct.

K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Appl. Phys.

J. C. Diels, F. P. Chafer, “Phase-matched third-harmonic generation in dye solutions,” Appl. Phys. 5, 197–202 (1974).
[CrossRef]

Appl. Phys. B

C. Schwan, A. Penzkofer, N. J. Marx, K. H. Drexhage, “Phased-matched third-harmonic generation of Nd:glass-laser picosecond pulses in a new cyanine-dye solution,” Appl. Phys. B 57, 203–211 (1993).
[CrossRef]

W. Leupacher, A. Penzkofer, B. Runde, K. H. Drexhage, “Efficient phase-matched third-harmonic light generation in Hexafluoroisopropanol solutions of a pyrimidonecarbocyanine dye,” Appl. Phys. B 44, 133–140 (1987).
[CrossRef]

Appl. Phys. Lett.

A. P. Davey, E. Bourdin, F. Henari, W. J. Blau, “Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion,” Appl. Phys. Lett. 67, 884–885 (1995).
[CrossRef]

E. Florin, J. K. H. Horber, E. H. K. Stelzer, “High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd:YAG laser,” Appl. Phys. Lett. 69, 446–448 (1996).
[CrossRef]

Ber. Busenges. Phys. Chem.

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of single cells using infrared laser beams,” Ber. Busenges. Phys. Chem. 93, 254–260 (1989).
[CrossRef]

Biophys. J.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

Chem. Phys. Lett.

B. Nickel, H. E. Wilhelm, A. A. Ruth, “Anti-Smoluchowski time dependence of the delayed fluorescence from anthracence in viscous solution due to triplet–triplet annihilation. Effect of Forster energy transfer S1 + T1 → S0 + Tn on the initial spatial distribution of molecules in T1,” Chem. Phys. Lett. 188, 267–287 (1994).

A. A. Ruth, F. J. O’Keeffe, M. W. D. Mansfield, R. P. Brint, “The resonance-enhanced multiphoton excitation spectrum of jet-cooled 4-H-1-benzopyrane-4-thione,” Chem. Phys. Lett. 264, 605–613 (1997).
[CrossRef]

S. Speiser, J. Jortner, “The 3/2 power law for high order multiphoton processes,” Chem. Phys. Lett. 44, 399–403 (1976).
[CrossRef]

S. Speiser, S. Skimel, “On the possibility of observing photochemical reactions induced by multiphoton absorption,” Chem. Phys. Lett. 7, 19–22 (1970).
[CrossRef]

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:Sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

IEEE J. Quantum Electron.

P. P. Bey, J. F. Giuliani, H. Rabin, “Enhanced optical third-harmonic generation by coupled nonlinear absorption,” IEEE J. Quantum Electron. QE-7, 86–88 (1971).
[CrossRef]

J. Biochem. Opt.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).

J. Microsc.

P. E. Hanninen, E. Soini, S. W. Hell, “Continuous wave excitation two-photon fluorescence microscopy,” J. Microsc. 176, 222–225 (1994).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

J. D. Bhawalkar, G. S. He, P. N. Prasad, “Three-photon induced upconverted fluorescence from an organic compound: application to optical power limiting,” Opt. Commun. 119, 587–590 (1995).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

A. Penzkofer, W. Leupacher, “Experimental and theoretical investigation of third-harmonic generation in phase-matched dye solutions,” Opt. Quantum Electron. 20, 227–256 (1988).
[CrossRef]

Opt. Spectrosc.

V. V. Sapunov, “Kinetics of triplet–triplet annihilation in liquid solutions,” Opt. Spectrosc. 79, 558–563 (1995).

Photonchem. Photonbiol.

I. Gryczynski, H. Szmacinski, J. R. Lakowicz, “On the possibility of calcium imaging using Indo-1 with three-photon excitation,” Photonchem. Photonbiol. 62, 804–808 (1995).
[CrossRef]

Phys. Rev.

R. K. Chang, L. K. Galbraith, “Optical third-harmonic generation in dye solutions,” Phys. Rev. 171, 993–996 (1968).
[CrossRef]

Phys. Rev. Lett.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Other

S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley-Liss, New York, 1990), pp. 372–402.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

S. H. Lin, Y. Fujimura, H. J. Neusser, E. W. Schlag, Multiphoton Spectroscopy of Molecules (Academic, Harcourt Brace Jovanovich, San Diego, Calif., 1984).

H. C. Kang, R. P. Haugland, P. J. Fisher, F. G. Prendergast, “Spectral properties of 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromenthen-1,1′-borondifuloride complex (BODIPY), its sodium salt, and protein derivatives,” in New Technologies in Cytometry, G. C. Salzman, ed., Proc. SPIE1063, 68–73 (1989).
[CrossRef]

F. H. M. Faisal, Theory of Multiphoton Processes (Plenum, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption spectra of BODIPY in methanol, BODIPY in water, and BODIPY in immersion oil solutions. The inset is the basic structure of the BODIPY fluorophore.

Fig. 2
Fig. 2

Comparison of the fluorescence spectra of the 4-μm yellow-green beads excited by 1064-nm laser light and 365-nm UV light. The trapping and the exciting laser power was 300 mW.

Fig. 3
Fig. 3

Power dependence of the fluorescence intensity versus incident power for 1- and 4-μm trapped yellow-green beads. They were 1.97 and 2.09. The integration time of the CCD was 15 s.

Fig. 4
Fig. 4

Variation of the power dependence of the BODIPY in oil for two different N.A. objective lenses under cw laser light. The integration time of the CCD was 25 s for the 1.30 N.A. case and 30 s for the 0.65 N.A. case.

Fig. 5
Fig. 5

Variation of the power dependence of the BODIPY in oil for three different N.A. objective lenses under pulse laser light. The integration time of the CCD was 20 s for all the three different N.A. conditions, the repetition rates of the laser pulses were 5, 3, and 3 kHz for the cases of 1.30, 0.40, 0.25 N.A. objective lenses, respectively.

Fig. 6
Fig. 6

Assumed nonscaled energy levels to present the fluorescence emission and the multiphoton absorption processes for the dye in the trapped yellow-green beads.

Fig. 7
Fig. 7

Dog-bone conical geometry of laser light. D is the focus length; 2L is the interaction region; 2L f is the length of the focus region; R f is the radius of the focus region; and 2θ is the aperture angle of the objective.

Fig. 8
Fig. 8

Model calculations of the intensity dependence of three-photon fluorescence for 1.30, 0.40, and 0.25 N.A. objective conditions. L = 100 μm; C n0 = C nk ; and k = 2.

Fig. 9
Fig. 9

Three-photon fluorescence log–log power-dependence variation with k values. (L f /D)2M ≤ (L/ D)2; L = 100 μm; C n0 = C nk ; and N.A. = 1.30.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N 11 = N *   σ n I n τ 11 + τ 1 T 1 + σ n I n τ 11 + τ 1 T + τ T 0 τ 1 T   σ n I n τ 11 + τ 1 T ,
N 11 = N * τ 11 σ n I n 1 + τ 11 σ n I n .
Γ z = C n 0 I n z / I c n for   E < E c C nk I n - k z / I c n - k for   E E c ,
L c = E f L f / E c = E 0 D / E c ,
Γ =   Γ z d v ,
Γ = C n 0 I 0 / I c n 1 + 1 - L f / L 2 n - 3 2 n - 3 D L f 2 n V f , 0 M L f / D 2 ,
Γ = C nk I 0 / I c n - k 1 - 1 3 - 2 n + 2 k D L f 2 n - 2 k + I 0 / I c 3 / 2 C nk 3 - 2 n + 2 k - C n 0 3 - 2 n D L f 3 + C n 0 I 0 / I c n 3 - 2 n D L 2 n L L f 3 V f , L f / D 2 M L / D 2 ,
Γ = C nk I 0 / I c n - k 1 - 1 - L f / L 2 n - 2 k - 3 3 - 2 n + 2 k D L f 2 n - 2 k V f , M L / D 2 .

Metrics