Abstract

We present a steady-state method for localizing a source of luminescence (i.e., fluorescence or phosphorescence) buried in a semi-infinite turbid medium with unknown optical properties. A diffusion theory expression describing the emittance of an isotropic point source is fit to spatially resolved surface measurements of the diffuse emittance from the luminescent source. The technique reports the location of the center of a 6.0-mm-diameter, fluorophore-containing spherical bulb embedded in a liquid phantom with an accuracy of 1.0 mm or better for source depths as great as 40.0 mm. Monte Carlo data are analyzed to investigate the range and the possible sources of error in the reconstructed source depth.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For recent collections of articles on this and closely related subjects, see Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano , eds., Proc. SPIE2979 (1997) and Advances in Optical Imaging Photon Migration, R. R. Alfano, J. G. Fujimoto , eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  2. J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
    [CrossRef] [PubMed]
  3. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef] [PubMed]
  4. J. Chang, H. L. Graber, R. L. Barbour, “Image reconstruction of dense scattering media from cw sources using constrained CGD and a matrix rescaling technique,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 682–691 (1995).
    [CrossRef]
  5. D. A. Benaron, J. P. Van Houten, W.-F. Cheong, E. L. Kermit, R. A. King, “Early clinical results of time-of-flight optical tomography in a neonatal intensive care unit,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 582–596 (1995).
    [CrossRef]
  6. R. R. Alfano, A. Pradhan, G. C. Tang, “Optical spectroscopic diagnosis of cancer in normal and breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
    [CrossRef]
  7. R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
    [CrossRef] [PubMed]
  8. J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
    [CrossRef] [PubMed]
  9. A. Mahadevan, M. F. Mitchell, E. Silve, S. Thomsen, R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic cervical tissue,” Lasers Surg. Med. 13, 647–655 (1993).
    [CrossRef]
  10. S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
    [PubMed]
  11. E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994).
    [CrossRef] [PubMed]
  12. T. Takemura, S. Nakajima, I. Sakata, “Tumor-localizing fluorescent diagnostic agents without phototoxicity,” Photochem. Photobiol. 59, 366–370 (1994).
    [CrossRef] [PubMed]
  13. K. W. Woodburn, Q. Fan, D. R. Miles, D. Kessel, Y. Luo, S. W. Young, “Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model,” Photochem. Photobiol. 65, 410–415 (1997).
    [CrossRef] [PubMed]
  14. S. A. Vinogradov, D. F. Wilson, “Metallotetrabenzoporphyrins. New phosphorescent probes for oxygen measurements,” J. Chem. Soc. Perkin Trans. 2, 103–111 (1995).
  15. S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
    [CrossRef] [PubMed]
  16. C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
    [CrossRef] [PubMed]
  17. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
    [CrossRef] [PubMed]
  18. J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
    [CrossRef] [PubMed]
  19. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
    [CrossRef] [PubMed]
  20. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999–R3002 (1991).
    [CrossRef]
  21. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Luminesc. 60–61, 281–286 (1994).
    [CrossRef]
  22. A. Knüttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
    [CrossRef]
  23. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
    [CrossRef] [PubMed]
  24. J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997).
    [CrossRef]
  25. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  26. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  27. A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissue,” Phys. Med. Biol. 40, 1957–1975 (1995).
    [CrossRef] [PubMed]
  28. M. Keijzer, W. M. Star, P. R. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988).
    [CrossRef] [PubMed]
  29. R. A. J. Groenhuis, H. A. Ferwerda, J. J. T. Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22, 2456–2462 (1983).
    [CrossRef] [PubMed]
  30. M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
    [CrossRef] [PubMed]
  31. A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
    [CrossRef]
  32. M. R. Lewis, H. A. Sloviter, P. P. Goland, “In vivo staining and retardation of growth of sarcomata in mice,” Anat. Rec. 95, 89–96 (1946).
    [CrossRef]
  33. L. Cincotta, J. W. Foley, T. MacEachern, L. Lampros, A. H. Cincotta, “Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas,” Cancer Res. 54, 1249–1258 (1994).
    [PubMed]
  34. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.
  35. L. Wang, S. L. Jacques, L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995).
    [CrossRef]
  36. M. G. Nichols, “Transport of oxygen and light in model tumor systems,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1996).
  37. J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Tomographic detection of fluorophores embedded in tissue-like phantom,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends In Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 116–118.
  38. D. F. Wilson, G. J. Cerniglia, “Localization of tumors and evaluation of their state of oxygenation by phosphorescence imaging,” Cancer Res. 52, 3988–3993 (1992).
    [PubMed]
  39. W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
    [CrossRef] [PubMed]
  40. M. A. J. Rodgers, “The photoproperties of porphyrins in model biological environments,” in Photodynamic Therapy of Tumors and Other Diseases (Libreria Progetto Editore, Padova, Italy, 1985), pp. 21–35.

1997 (5)

1996 (3)

1995 (6)

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

S. A. Vinogradov, D. F. Wilson, “Metallotetrabenzoporphyrins. New phosphorescent probes for oxygen measurements,” J. Chem. Soc. Perkin Trans. 2, 103–111 (1995).

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef] [PubMed]

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissue,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995).
[CrossRef]

1994 (6)

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

L. Cincotta, J. W. Foley, T. MacEachern, L. Lampros, A. H. Cincotta, “Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas,” Cancer Res. 54, 1249–1258 (1994).
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Luminesc. 60–61, 281–286 (1994).
[CrossRef]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
[CrossRef] [PubMed]

E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994).
[CrossRef] [PubMed]

T. Takemura, S. Nakajima, I. Sakata, “Tumor-localizing fluorescent diagnostic agents without phototoxicity,” Photochem. Photobiol. 59, 366–370 (1994).
[CrossRef] [PubMed]

1993 (2)

A. Mahadevan, M. F. Mitchell, E. Silve, S. Thomsen, R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic cervical tissue,” Lasers Surg. Med. 13, 647–655 (1993).
[CrossRef]

A. Knüttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

1992 (2)

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

D. F. Wilson, G. J. Cerniglia, “Localization of tumors and evaluation of their state of oxygenation by phosphorescence imaging,” Cancer Res. 52, 3988–3993 (1992).
[PubMed]

1991 (3)

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999–R3002 (1991).
[CrossRef]

1990 (1)

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (2)

M. Keijzer, W. M. Star, P. R. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988).
[CrossRef] [PubMed]

W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
[CrossRef] [PubMed]

1983 (1)

1946 (1)

M. R. Lewis, H. A. Sloviter, P. P. Goland, “In vivo staining and retardation of growth of sarcomata in mice,” Anat. Rec. 95, 89–96 (1946).
[CrossRef]

Alfano, R. R.

Andersson-Engels, S.

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

Barbour, R. L.

J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997).
[CrossRef]

J. Chang, H. L. Graber, R. L. Barbour, “Image reconstruction of dense scattering media from cw sources using constrained CGD and a matrix rescaling technique,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 682–691 (1995).
[CrossRef]

Barnes, R.

A. Knüttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Benaron, D. A.

D. A. Benaron, J. P. Van Houten, W.-F. Cheong, E. L. Kermit, R. A. King, “Early clinical results of time-of-flight optical tomography in a neonatal intensive care unit,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 582–596 (1995).
[CrossRef]

Blackman, R.

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Boas, D. A.

Bosch, J. J. T.

Boyce, G. A.

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Cerniglia, G. J.

D. F. Wilson, G. J. Cerniglia, “Localization of tumors and evaluation of their state of oxygenation by phosphorescence imaging,” Cancer Res. 52, 3988–3993 (1992).
[PubMed]

Chance, B.

Chang, J.

J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997).
[CrossRef]

J. Chang, H. L. Graber, R. L. Barbour, “Image reconstruction of dense scattering media from cw sources using constrained CGD and a matrix rescaling technique,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 682–691 (1995).
[CrossRef]

Chen, A. U.

Cheong, W.-F.

D. A. Benaron, J. P. Van Houten, W.-F. Cheong, E. L. Kermit, R. A. King, “Early clinical results of time-of-flight optical tomography in a neonatal intensive care unit,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 582–596 (1995).
[CrossRef]

Cincotta, A. H.

L. Cincotta, J. W. Foley, T. MacEachern, L. Lampros, A. H. Cincotta, “Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas,” Cancer Res. 54, 1249–1258 (1994).
[PubMed]

Cincotta, L.

L. Cincotta, J. W. Foley, T. MacEachern, L. Lampros, A. H. Cincotta, “Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas,” Cancer Res. 54, 1249–1258 (1994).
[PubMed]

Cothren, R. M.

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Dasari, R. R.

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
[CrossRef] [PubMed]

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Tomographic detection of fluorophores embedded in tissue-like phantom,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends In Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 116–118.

Delpy, D. T.

Doxtader, M.

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Evans, S. M.

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

Fan, Q.

K. W. Woodburn, Q. Fan, D. R. Miles, D. Kessel, Y. Luo, S. W. Young, “Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model,” Photochem. Photobiol. 65, 410–415 (1997).
[CrossRef] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Feld, M. S.

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
[CrossRef] [PubMed]

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Tomographic detection of fluorophores embedded in tissue-like phantom,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends In Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 116–118.

Feng, T.

Ferwerda, H. A.

Fitzmaurice, M.

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.

Foley, J. W.

L. Cincotta, J. W. Foley, T. MacEachern, L. Lampros, A. H. Cincotta, “Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas,” Cancer Res. 54, 1249–1258 (1994).
[PubMed]

Foster, T. H.

Goland, P. P.

M. R. Lewis, H. A. Sloviter, P. P. Goland, “In vivo staining and retardation of growth of sarcomata in mice,” Anat. Rec. 95, 89–96 (1946).
[CrossRef]

Graber, H. L.

J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997).
[CrossRef]

J. Chang, H. L. Graber, R. L. Barbour, “Image reconstruction of dense scattering media from cw sources using constrained CGD and a matrix rescaling technique,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 682–691 (1995).
[CrossRef]

Groenhuis, R. A. J.

Gust, D.

E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994).
[CrossRef] [PubMed]

Haskell, R. C.

Hayes, G. B.

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Hebden, J. C.

Hielscher, A. H.

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissue,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Hull, E. L.

Hung, J.

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Hutchinson, C. L.

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

Itzkan, I.

Ivanc, T. B.

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Jacques, S. L.

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissue,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995).
[CrossRef]

Jenkins, W. T.

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

Johansson, J.

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

Jori, G.

E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994).
[CrossRef] [PubMed]

Keijzer, M.

Kermit, E. L.

D. A. Benaron, J. P. Van Houten, W.-F. Cheong, E. L. Kermit, R. A. King, “Early clinical results of time-of-flight optical tomography in a neonatal intensive care unit,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 582–596 (1995).
[CrossRef]

Kerrigan, P. K.

E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994).
[CrossRef] [PubMed]

Kessel, D.

K. W. Woodburn, Q. Fan, D. R. Miles, D. Kessel, Y. Luo, S. W. Young, “Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model,” Photochem. Photobiol. 65, 410–415 (1997).
[CrossRef] [PubMed]

Kienle, A.

King, R. A.

D. A. Benaron, J. P. Van Houten, W.-F. Cheong, E. L. Kermit, R. A. King, “Early clinical results of time-of-flight optical tomography in a neonatal intensive care unit,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 582–596 (1995).
[CrossRef]

Knutson, J. R.

A. Knüttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Knüttel, A.

A. Knüttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Koch, C.

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

Lakowicz, J. R.

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

Lam, S.

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Lampros, L.

L. Cincotta, J. W. Foley, T. MacEachern, L. Lampros, A. H. Cincotta, “Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas,” Cancer Res. 54, 1249–1258 (1994).
[PubMed]

LeRiche, J. C.

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Lewis, M. R.

M. R. Lewis, H. A. Sloviter, P. P. Goland, “In vivo staining and retardation of growth of sarcomata in mice,” Anat. Rec. 95, 89–96 (1946).
[CrossRef]

Li, X. D.

Liddell, P. A.

E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994).
[CrossRef] [PubMed]

Lo, L.-W.

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

Luo, Y.

K. W. Woodburn, Q. Fan, D. R. Miles, D. Kessel, Y. Luo, S. W. Young, “Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model,” Photochem. Photobiol. 65, 410–415 (1997).
[CrossRef] [PubMed]

MacEachern, T.

L. Cincotta, J. W. Foley, T. MacEachern, L. Lampros, A. H. Cincotta, “Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas,” Cancer Res. 54, 1249–1258 (1994).
[PubMed]

Mahadevan, A.

A. Mahadevan, M. F. Mitchell, E. Silve, S. Thomsen, R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic cervical tissue,” Lasers Surg. Med. 13, 647–655 (1993).
[CrossRef]

McAdams, M. S.

Miles, D. R.

K. W. Woodburn, Q. Fan, D. R. Miles, D. Kessel, Y. Luo, S. W. Young, “Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model,” Photochem. Photobiol. 65, 410–415 (1997).
[CrossRef] [PubMed]

Mitchell, M. F.

A. Mahadevan, M. F. Mitchell, E. Silve, S. Thomsen, R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic cervical tissue,” Lasers Surg. Med. 13, 647–655 (1993).
[CrossRef]

Moore, A. L.

E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994).
[CrossRef] [PubMed]

Moore, T. A.

E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994).
[CrossRef] [PubMed]

Nakajima, S.

T. Takemura, S. Nakajima, I. Sakata, “Tumor-localizing fluorescent diagnostic agents without phototoxicity,” Photochem. Photobiol. 59, 366–370 (1994).
[CrossRef] [PubMed]

Nichols, M. G.

O’Leary, M. A.

Paithankar, D. Y.

Palcic, B.

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Patterson, M. S.

Perelman, L.

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
[CrossRef] [PubMed]

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Tomographic detection of fluorophores embedded in tissue-like phantom,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends In Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 116–118.

Petras, R. E.

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Pogue, B. W.

Pradhan, A.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.

Rava, R. P.

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Reddi, E.

E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994).
[CrossRef] [PubMed]

Richards-Kortum, R.

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

A. Mahadevan, M. F. Mitchell, E. Silve, S. Thomsen, R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic cervical tissue,” Lasers Surg. Med. 13, 647–655 (1993).
[CrossRef]

Rodgers, M. A. J.

M. A. J. Rodgers, “The photoproperties of porphyrins in model biological environments,” in Photodynamic Therapy of Tumors and Other Diseases (Libreria Progetto Editore, Padova, Italy, 1985), pp. 21–35.

Rumsey, W. L.

W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
[CrossRef] [PubMed]

Sakata, I.

T. Takemura, S. Nakajima, I. Sakata, “Tumor-localizing fluorescent diagnostic agents without phototoxicity,” Photochem. Photobiol. 59, 366–370 (1994).
[CrossRef] [PubMed]

Schmitt, J. M.

A. Knüttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Segalla, A.

E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

Silve, E.

A. Mahadevan, M. F. Mitchell, E. Silve, S. Thomsen, R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic cervical tissue,” Lasers Surg. Med. 13, 647–655 (1993).
[CrossRef]

Sivak, M. V.

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Sloviter, H. A.

M. R. Lewis, H. A. Sloviter, P. P. Goland, “In vivo staining and retardation of growth of sarcomata in mice,” Anat. Rec. 95, 89–96 (1946).
[CrossRef]

Star, W. M.

Storchi, P. R.

Svaasand, L. O.

Svanberg, K.

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

Svanberg, S.

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

Takemura, T.

T. Takemura, S. Nakajima, I. Sakata, “Tumor-localizing fluorescent diagnostic agents without phototoxicity,” Photochem. Photobiol. 59, 366–370 (1994).
[CrossRef] [PubMed]

Tang, G. C.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.

Thomsen, S.

A. Mahadevan, M. F. Mitchell, E. Silve, S. Thomsen, R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic cervical tissue,” Lasers Surg. Med. 13, 647–655 (1993).
[CrossRef]

Tittel, F. K.

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissue,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Tromberg, B. J.

Tsay, T.

Van Houten, J. P.

D. A. Benaron, J. P. Van Houten, W.-F. Cheong, E. L. Kermit, R. A. King, “Early clinical results of time-of-flight optical tomography in a neonatal intensive care unit,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 582–596 (1995).
[CrossRef]

Vanderkooi, J. M.

W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
[CrossRef] [PubMed]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.

Vinogradov, S. A.

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

S. A. Vinogradov, D. F. Wilson, “Metallotetrabenzoporphyrins. New phosphorescent probes for oxygen measurements,” J. Chem. Soc. Perkin Trans. 2, 103–111 (1995).

Wang, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995).
[CrossRef]

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissue,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Wang, Y.

Wilson, B. C.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Wilson, D. F.

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

S. A. Vinogradov, D. F. Wilson, “Metallotetrabenzoporphyrins. New phosphorescent probes for oxygen measurements,” J. Chem. Soc. Perkin Trans. 2, 103–111 (1995).

D. F. Wilson, G. J. Cerniglia, “Localization of tumors and evaluation of their state of oxygenation by phosphorescence imaging,” Cancer Res. 52, 3988–3993 (1992).
[PubMed]

W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
[CrossRef] [PubMed]

Woodburn, K. W.

K. W. Woodburn, Q. Fan, D. R. Miles, D. Kessel, Y. Luo, S. W. Young, “Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model,” Photochem. Photobiol. 65, 410–415 (1997).
[CrossRef] [PubMed]

Wu, J.

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
[CrossRef] [PubMed]

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Tomographic detection of fluorophores embedded in tissue-like phantom,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends In Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 116–118.

Yodh, A. G.

Young, S. W.

K. W. Woodburn, Q. Fan, D. R. Miles, D. Kessel, Y. Luo, S. W. Young, “Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model,” Photochem. Photobiol. 65, 410–415 (1997).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995).
[CrossRef]

Anat. Rec. (1)

M. R. Lewis, H. A. Sloviter, P. P. Goland, “In vivo staining and retardation of growth of sarcomata in mice,” Anat. Rec. 95, 89–96 (1946).
[CrossRef]

Appl. Opt. (6)

Biophys. J. (2)

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

Br. J. Cancer (1)

E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994).
[CrossRef] [PubMed]

Cancer Res. (2)

L. Cincotta, J. W. Foley, T. MacEachern, L. Lampros, A. H. Cincotta, “Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas,” Cancer Res. 54, 1249–1258 (1994).
[PubMed]

D. F. Wilson, G. J. Cerniglia, “Localization of tumors and evaluation of their state of oxygenation by phosphorescence imaging,” Cancer Res. 52, 3988–3993 (1992).
[PubMed]

Comp. Meth. Prog. Biomed. (1)

L. Wang, S. L. Jacques, L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995).
[CrossRef]

Gastrointest. Endosc. (1)

R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

J. Chem. Soc. Perkin Trans. (1)

S. A. Vinogradov, D. F. Wilson, “Metallotetrabenzoporphyrins. New phosphorescent probes for oxygen measurements,” J. Chem. Soc. Perkin Trans. 2, 103–111 (1995).

J. Luminesc. (1)

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Luminesc. 60–61, 281–286 (1994).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

Lasers Surg. Med. (2)

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

A. Mahadevan, M. F. Mitchell, E. Silve, S. Thomsen, R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic cervical tissue,” Lasers Surg. Med. 13, 647–655 (1993).
[CrossRef]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Opt. Lett. (3)

Photochem. Photobiol. (3)

T. Takemura, S. Nakajima, I. Sakata, “Tumor-localizing fluorescent diagnostic agents without phototoxicity,” Photochem. Photobiol. 59, 366–370 (1994).
[CrossRef] [PubMed]

K. W. Woodburn, Q. Fan, D. R. Miles, D. Kessel, Y. Luo, S. W. Young, “Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model,” Photochem. Photobiol. 65, 410–415 (1997).
[CrossRef] [PubMed]

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

Phys. Med. Biol. (1)

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissue,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (1)

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999–R3002 (1991).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Knüttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Science (1)

W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
[CrossRef] [PubMed]

Other (7)

M. A. J. Rodgers, “The photoproperties of porphyrins in model biological environments,” in Photodynamic Therapy of Tumors and Other Diseases (Libreria Progetto Editore, Padova, Italy, 1985), pp. 21–35.

M. G. Nichols, “Transport of oxygen and light in model tumor systems,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1996).

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Tomographic detection of fluorophores embedded in tissue-like phantom,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends In Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 116–118.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.

For recent collections of articles on this and closely related subjects, see Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano , eds., Proc. SPIE2979 (1997) and Advances in Optical Imaging Photon Migration, R. R. Alfano, J. G. Fujimoto , eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

J. Chang, H. L. Graber, R. L. Barbour, “Image reconstruction of dense scattering media from cw sources using constrained CGD and a matrix rescaling technique,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 682–691 (1995).
[CrossRef]

D. A. Benaron, J. P. Van Houten, W.-F. Cheong, E. L. Kermit, R. A. King, “Early clinical results of time-of-flight optical tomography in a neonatal intensive care unit,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 582–596 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Dipole approximation for the emittance due to an isotropic point source at depth z 0 in an optically turbid semi-infinite medium. The image source is located at a position such that the fluence extrapolates to zero on a fictitious boundary.

Fig. 2
Fig. 2

Experimental apparatus for fluorescence excitation and detection.

Fig. 3
Fig. 3

Representative experimental diffuse fluorescence emittance data (symbols), and best fits of Eq. (7) to the data (curves). The actual source depths are indicated on the plot. The best-fit values of z 0 were 40.6 ± 2.6, 14.3 ± 0.3, and 6.9 ± 0.1 mm. Error bars were assigned from Poisson counting statistics were applied to the background-corrected fluorescence signal binned on the CCD but are not shown since they are smaller than the symbols in all cases.

Fig. 4
Fig. 4

Values of z 0 obtained when Eq. (7) was fit to experimental diffuse fluorescence emittance data. In the fits, z b was held constant at 2.00 mm and μeff and z 0 were extracted as fitting parameters. The solid line is the line of exact agreement between actual and fitted values.

Fig. 5
Fig. 5

Values of μeff obtained when Eq. (7) was fit to experimental diffuse fluorescence emittance data. In the fits, z b was held constant at 2.00 mm and μeff and z 0 were extracted as fitting parameters. The dashed line indicates the measured value of μeff at 680 nm (0.066 mm-1).

Fig. 6
Fig. 6

Experimental fluorescence emittance data (points) for two 10-mm-diameter sources at positions of (z 0[source1] = 9.5 mm, ρ[source1] = 0.0 mm) and (z 0[source2] = 10.0 mm, ρ[source2] = 23.0 mm). The data are normalized to the emittance at ρ = 4.19 mm (chosen arbitrarily). The curve is the best fit of Eq. (8) to the data. The fit returned values of z 0[source1] = 11.7 ± 0.5 mm, z 0[source2] = 11.9 ± 0.2 mm, r sep = 22.4 ± 0.1 mm, α = 114 ± 11, and β = 186 ± 13.

Fig. 7
Fig. 7

Inverse of the χ2 goodness-of-fit statistic calculated with Eq. (7) for Monte Carlo diffuse emittance data simulating isotropic point sources at depths of (a) z 0 = 1.0 mm, (b) 10.0 mm, and (c) 50.0 mm. The x and the y axes represent the values of μeff and z 0 used in the calculation of χ2. In the calculations, z b was assumed to be 1.95 mm.

Fig. 8
Fig. 8

Contours of constant χ2 computed by Eq. (7) for Monte Carlo diffuse emittance data simulating an isotropic source depth of z 0 = 10.0 mm. The x and the y axes represent the values of μeff and z 0 used in the calculation of χ2. In the calculations, z b was assumed to be (a) 0.1 mm, (b) 1.0 mm, or (c) 1.95 mm. The horizontal lines represent the value of z 0 used in the simulation (10.0 mm), and the vertical lines represent the value of μeff used in the simulation (0.174 mm-1). The solid contour connects points for which χ2 = 100. Subsequent contour styles (moving from the center out) represent χ2 = 500, 1000, 5000, 1 × 104, 5 × 104, 1 × 105, and 1 × 106.

Fig. 9
Fig. 9

Results of a series of fits to Monte Carlo data in which z b was held fixed at values ranging from 0 to 1000.0 mm. The error in the returned value for z 0 is plotted as a function of the value at which z b was held fixed during the fitting procedure (bottom axis). The corresponding value of the diffusion coefficient D is shown on the top axis. The dotted vertical line indicates the diffusion coefficient used in the simulations (0.33 mm). The horizontal bracket at the bottom indicates the range of z b corresponding to estimates of μ s ′ that are accurate to within ±50%. Only the range of z b over which the error in z 0 changes rapidly as a function of z b is shown.

Fig. 10
Fig. 10

Error in the fitted value for z 0 plotted as a function of the fitted value of μeff for each of 40 fixed extrapolated boundary positions z b ranging from 0 to 1000.0 mm. The cases of z 0 = 1, 2, and 5 mm are shown, but similar behavior was noted for all source depths. Each data point represents the results of a fit corresponding to a different fixed value of z b . The values returned for z b = 0 and z b ≈ ∞ are indicated on the plot for the case of z 0 = 1 mm, and the end points are similar for the other cases. As the extrapolated boundary position z b is increased, the data points proceed in a counterclockwise fashion.

Tables (1)

Tables Icon

Table 1 Actual and Fitted Values of z0 and μeff for the Experimental Data Depicted in Figures 3, 4, and 5

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ψ ρ ,   z = 0 ;   z 0 = 1 4 π D exp - μ eff r 1 r 1 - exp - μ eff r 2 r 2 ,
j z ρ ,   z = 0 ;   z 0 = - D   ψ ρ ,   z ;   z 0 z z = 0 ,
j z ρ ,   z = 0 ;   z 0 = 1 4 π z 0 μ eff + 1 r 1 exp - μ eff r 1 r 1 2 + z 0 + 2 z b μ eff + 1 r 2 exp - μ eff r 2 r 2 2 ,
R detected ρ ;   z 0 = Ω detector   T Fresnel θ 1 4 π   ψ ρ ,   z = 0 ;   z 0 - 3 4 π   j z ρ ,   z = 0 ;   z 0 cos   θ cos   θ d Ω ,
R detected ρ ;   z 0 = 0.1178 ψ ρ ;   z 0 + 0.3056 j z ρ ;   z 0 ,
R detected ρ ;   z 0 = 0.0062 ψ ρ ;   z 0 + 0.0184 j z ρ ;   z 0 .
F norm ρ ;   z 0 = F ρ ;   z 0 F ρ norm ;   z 0
E ρ ;   z 0 source 1 ,   z 0 source 2 = α F ρ ;   z 0 source 1 + β F × ρ - r sep ;   z 0 source 2 ,

Metrics