Abstract

A new tympanic thermometer is analyzed and tested experimentally. An electrically calibrated pyroelectric detector of special configuration is employed to determine a person’s body temperature. An energy-storage, power-supply-isolated capacitor is used as the electrical heating reference. The new thermometer design has an accuracy within ±0.1 °C with a 90% confidence and is immune to ambient temperature, detector aging, and parameter variations. An equivalent-circuit model is established in the analysis to account for the heat exchanges among the tympanum, the surroundings, and the detector as well as for the electrothermal behavior of the detector. The model provides effective simulation of the thermometer with PSPICE. Critical parameters governing the accuracy and the limitation of the tympanic thermometer are also pointed out by the simulation.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Webster, Encyclopedia of Medical Devices and Instrumentation, Vol. 4 (Wiley, New York, 1988), pp. 2723–2730.
  2. T. H. Benzinger, “On physical regulation and the sense of temperature in man,” Proc. Natl. Acad. Sci. 45, 645–649 (1959).
    [CrossRef]
  3. M. Benzinger, “Tympanic thermometry in anesthesia and surgery,” J. Am. Med. Assoc. 209, 1207–1211 (1969).
    [CrossRef]
  4. G. J. O’Hara, D. B. Phillips , “Method and apparatus for measuring internal body temperature utilizing infrared emissions,” U.S. patent4,602,642 (29July1986).
  5. J. Fraden, “Infrared electronic thermometer and method for measuring temperature,” U.S. patent4,797,840 (10January1989).
  6. J. Jakobsson, A. Nilsson, L. Carlsson, “Core temperature measured in the auricular canal: comparison between four different tympanic thermometers,” Acta Anaesthesiol. Scand. 36, 819–824 (1992).
    [CrossRef] [PubMed]
  7. M. E. Weiss, A. F. Pue, J. Smith, “Laboratory and hospital testing of new infrared tympanic thermometer,” J. Clin. Eng. 16, 137–144 (1991).
    [PubMed]
  8. F. Cascetta, “An evaluation of the performance of an infrared tympanic thermometer,” Measurement 16, 239–246 (1995).
    [CrossRef]
  9. J. Geist, W. R. Blevin, “Chopper-stabilized null radiometer based upon and electrically calibrated pyroelectric detector,” Appl. Opt. 12, 2532–2535 (1973).
    [CrossRef] [PubMed]
  10. W. M. Doyle, B. C. Mcintosh, J. Geist, “Implementation of a system optical calibration based on pyroelectric radiometry,” Opt. Eng. 15, 541–548 (1976).
    [CrossRef]
  11. F. Hengstberger, Absolute Radiometry: Electrically Calibrated Thermal Detectors of Optical Radiation (Academic, New York, 1989), pp. 1–116.
    [CrossRef]
  12. J. Fraden, “Noncontact temperature measurements in medicine,” in Bioinstrumentation and Biosensors (Marcel Dekker, New York, 1991), pp. 511–549.
  13. A. K. Oppenhein, “Radiative analysis by network method,” Trans. Am. Soc. Mech. Eng. 78, 725–735 (1956).
  14. J. P. Holman, Heat Transfer, 7th ed. (McGraw-Hill, New York, 1992), pp. 385–506.
  15. R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969), pp. 20–113.
  16. J. Copper, “Minimum detectable power of a pyroelectric thermal receiver,” Rev. Sci. Instrum. 33, 92–95 (1962).
    [CrossRef]
  17. M. Simbony, A. Shaulov, “Pyroelectric voltage response to step signals of infrared radiation in triglycine sulphate and strontium-barium niobate,” J. Appl. Phys. 42, 3741–3744 (1971).
    [CrossRef]
  18. J. S. Shie, Y. M. Chen, M. Ou-Yang, B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” IEEE J. Microelectromech. Syst. 5, 298–306 (1996).
    [CrossRef]
  19. M. Ou-Yang, “Implementation of absolute optical power meter with single-chip controller,” M.S. thesis (National Chiao Tung University, Taiwan, 1993).
  20. J. S. Shie, J. C. Hong, G. H. Yu, “Design of electrically calibrated pyroelectric radiometer,” J. Chin. Inst. Eng. 12, 239–247 (1989).
    [CrossRef]
  21. R. J. Phelan, A. R. Cook, “Electrically calibrated pyroelectric optical–radiation detector,” Appl. Opt. 12, 2494–2500 (1973).
    [CrossRef] [PubMed]
  22. M. P. Timko, “A two-terminal IC temperature transducer,” IEEE J. Solid-State Circuits SC-11, 784–788 (1976).
    [CrossRef]

1996 (1)

J. S. Shie, Y. M. Chen, M. Ou-Yang, B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” IEEE J. Microelectromech. Syst. 5, 298–306 (1996).
[CrossRef]

1995 (1)

F. Cascetta, “An evaluation of the performance of an infrared tympanic thermometer,” Measurement 16, 239–246 (1995).
[CrossRef]

1992 (1)

J. Jakobsson, A. Nilsson, L. Carlsson, “Core temperature measured in the auricular canal: comparison between four different tympanic thermometers,” Acta Anaesthesiol. Scand. 36, 819–824 (1992).
[CrossRef] [PubMed]

1991 (1)

M. E. Weiss, A. F. Pue, J. Smith, “Laboratory and hospital testing of new infrared tympanic thermometer,” J. Clin. Eng. 16, 137–144 (1991).
[PubMed]

1989 (1)

J. S. Shie, J. C. Hong, G. H. Yu, “Design of electrically calibrated pyroelectric radiometer,” J. Chin. Inst. Eng. 12, 239–247 (1989).
[CrossRef]

1976 (2)

M. P. Timko, “A two-terminal IC temperature transducer,” IEEE J. Solid-State Circuits SC-11, 784–788 (1976).
[CrossRef]

W. M. Doyle, B. C. Mcintosh, J. Geist, “Implementation of a system optical calibration based on pyroelectric radiometry,” Opt. Eng. 15, 541–548 (1976).
[CrossRef]

1973 (2)

1971 (1)

M. Simbony, A. Shaulov, “Pyroelectric voltage response to step signals of infrared radiation in triglycine sulphate and strontium-barium niobate,” J. Appl. Phys. 42, 3741–3744 (1971).
[CrossRef]

1969 (1)

M. Benzinger, “Tympanic thermometry in anesthesia and surgery,” J. Am. Med. Assoc. 209, 1207–1211 (1969).
[CrossRef]

1962 (1)

J. Copper, “Minimum detectable power of a pyroelectric thermal receiver,” Rev. Sci. Instrum. 33, 92–95 (1962).
[CrossRef]

1959 (1)

T. H. Benzinger, “On physical regulation and the sense of temperature in man,” Proc. Natl. Acad. Sci. 45, 645–649 (1959).
[CrossRef]

1956 (1)

A. K. Oppenhein, “Radiative analysis by network method,” Trans. Am. Soc. Mech. Eng. 78, 725–735 (1956).

Benzinger, M.

M. Benzinger, “Tympanic thermometry in anesthesia and surgery,” J. Am. Med. Assoc. 209, 1207–1211 (1969).
[CrossRef]

Benzinger, T. H.

T. H. Benzinger, “On physical regulation and the sense of temperature in man,” Proc. Natl. Acad. Sci. 45, 645–649 (1959).
[CrossRef]

Blevin, W. R.

Carlsson, L.

J. Jakobsson, A. Nilsson, L. Carlsson, “Core temperature measured in the auricular canal: comparison between four different tympanic thermometers,” Acta Anaesthesiol. Scand. 36, 819–824 (1992).
[CrossRef] [PubMed]

Cascetta, F.

F. Cascetta, “An evaluation of the performance of an infrared tympanic thermometer,” Measurement 16, 239–246 (1995).
[CrossRef]

Chen, Y. M.

J. S. Shie, Y. M. Chen, M. Ou-Yang, B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” IEEE J. Microelectromech. Syst. 5, 298–306 (1996).
[CrossRef]

Chou, B. C. S.

J. S. Shie, Y. M. Chen, M. Ou-Yang, B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” IEEE J. Microelectromech. Syst. 5, 298–306 (1996).
[CrossRef]

Cook, A. R.

Copper, J.

J. Copper, “Minimum detectable power of a pyroelectric thermal receiver,” Rev. Sci. Instrum. 33, 92–95 (1962).
[CrossRef]

Doyle, W. M.

W. M. Doyle, B. C. Mcintosh, J. Geist, “Implementation of a system optical calibration based on pyroelectric radiometry,” Opt. Eng. 15, 541–548 (1976).
[CrossRef]

Fraden, J.

J. Fraden, “Noncontact temperature measurements in medicine,” in Bioinstrumentation and Biosensors (Marcel Dekker, New York, 1991), pp. 511–549.

J. Fraden, “Infrared electronic thermometer and method for measuring temperature,” U.S. patent4,797,840 (10January1989).

Geist, J.

W. M. Doyle, B. C. Mcintosh, J. Geist, “Implementation of a system optical calibration based on pyroelectric radiometry,” Opt. Eng. 15, 541–548 (1976).
[CrossRef]

J. Geist, W. R. Blevin, “Chopper-stabilized null radiometer based upon and electrically calibrated pyroelectric detector,” Appl. Opt. 12, 2532–2535 (1973).
[CrossRef] [PubMed]

Hengstberger, F.

F. Hengstberger, Absolute Radiometry: Electrically Calibrated Thermal Detectors of Optical Radiation (Academic, New York, 1989), pp. 1–116.
[CrossRef]

Holman, J. P.

J. P. Holman, Heat Transfer, 7th ed. (McGraw-Hill, New York, 1992), pp. 385–506.

Hong, J. C.

J. S. Shie, J. C. Hong, G. H. Yu, “Design of electrically calibrated pyroelectric radiometer,” J. Chin. Inst. Eng. 12, 239–247 (1989).
[CrossRef]

Hudson, R. D.

R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969), pp. 20–113.

Jakobsson, J.

J. Jakobsson, A. Nilsson, L. Carlsson, “Core temperature measured in the auricular canal: comparison between four different tympanic thermometers,” Acta Anaesthesiol. Scand. 36, 819–824 (1992).
[CrossRef] [PubMed]

Mcintosh, B. C.

W. M. Doyle, B. C. Mcintosh, J. Geist, “Implementation of a system optical calibration based on pyroelectric radiometry,” Opt. Eng. 15, 541–548 (1976).
[CrossRef]

Nilsson, A.

J. Jakobsson, A. Nilsson, L. Carlsson, “Core temperature measured in the auricular canal: comparison between four different tympanic thermometers,” Acta Anaesthesiol. Scand. 36, 819–824 (1992).
[CrossRef] [PubMed]

O’Hara, G. J.

G. J. O’Hara, D. B. Phillips , “Method and apparatus for measuring internal body temperature utilizing infrared emissions,” U.S. patent4,602,642 (29July1986).

Oppenhein, A. K.

A. K. Oppenhein, “Radiative analysis by network method,” Trans. Am. Soc. Mech. Eng. 78, 725–735 (1956).

Ou-Yang, M.

J. S. Shie, Y. M. Chen, M. Ou-Yang, B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” IEEE J. Microelectromech. Syst. 5, 298–306 (1996).
[CrossRef]

M. Ou-Yang, “Implementation of absolute optical power meter with single-chip controller,” M.S. thesis (National Chiao Tung University, Taiwan, 1993).

Phelan, R. J.

Phillips, D. B.

G. J. O’Hara, D. B. Phillips , “Method and apparatus for measuring internal body temperature utilizing infrared emissions,” U.S. patent4,602,642 (29July1986).

Pue, A. F.

M. E. Weiss, A. F. Pue, J. Smith, “Laboratory and hospital testing of new infrared tympanic thermometer,” J. Clin. Eng. 16, 137–144 (1991).
[PubMed]

Shaulov, A.

M. Simbony, A. Shaulov, “Pyroelectric voltage response to step signals of infrared radiation in triglycine sulphate and strontium-barium niobate,” J. Appl. Phys. 42, 3741–3744 (1971).
[CrossRef]

Shie, J. S.

J. S. Shie, Y. M. Chen, M. Ou-Yang, B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” IEEE J. Microelectromech. Syst. 5, 298–306 (1996).
[CrossRef]

J. S. Shie, J. C. Hong, G. H. Yu, “Design of electrically calibrated pyroelectric radiometer,” J. Chin. Inst. Eng. 12, 239–247 (1989).
[CrossRef]

Simbony, M.

M. Simbony, A. Shaulov, “Pyroelectric voltage response to step signals of infrared radiation in triglycine sulphate and strontium-barium niobate,” J. Appl. Phys. 42, 3741–3744 (1971).
[CrossRef]

Smith, J.

M. E. Weiss, A. F. Pue, J. Smith, “Laboratory and hospital testing of new infrared tympanic thermometer,” J. Clin. Eng. 16, 137–144 (1991).
[PubMed]

Timko, M. P.

M. P. Timko, “A two-terminal IC temperature transducer,” IEEE J. Solid-State Circuits SC-11, 784–788 (1976).
[CrossRef]

Webster, J. G.

J. G. Webster, Encyclopedia of Medical Devices and Instrumentation, Vol. 4 (Wiley, New York, 1988), pp. 2723–2730.

Weiss, M. E.

M. E. Weiss, A. F. Pue, J. Smith, “Laboratory and hospital testing of new infrared tympanic thermometer,” J. Clin. Eng. 16, 137–144 (1991).
[PubMed]

Yu, G. H.

J. S. Shie, J. C. Hong, G. H. Yu, “Design of electrically calibrated pyroelectric radiometer,” J. Chin. Inst. Eng. 12, 239–247 (1989).
[CrossRef]

Acta Anaesthesiol. Scand. (1)

J. Jakobsson, A. Nilsson, L. Carlsson, “Core temperature measured in the auricular canal: comparison between four different tympanic thermometers,” Acta Anaesthesiol. Scand. 36, 819–824 (1992).
[CrossRef] [PubMed]

Appl. Opt. (2)

IEEE J. Microelectromech. Syst. (1)

J. S. Shie, Y. M. Chen, M. Ou-Yang, B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” IEEE J. Microelectromech. Syst. 5, 298–306 (1996).
[CrossRef]

IEEE J. Solid-State Circuits (1)

M. P. Timko, “A two-terminal IC temperature transducer,” IEEE J. Solid-State Circuits SC-11, 784–788 (1976).
[CrossRef]

J. Am. Med. Assoc. (1)

M. Benzinger, “Tympanic thermometry in anesthesia and surgery,” J. Am. Med. Assoc. 209, 1207–1211 (1969).
[CrossRef]

J. Appl. Phys. (1)

M. Simbony, A. Shaulov, “Pyroelectric voltage response to step signals of infrared radiation in triglycine sulphate and strontium-barium niobate,” J. Appl. Phys. 42, 3741–3744 (1971).
[CrossRef]

J. Chin. Inst. Eng. (1)

J. S. Shie, J. C. Hong, G. H. Yu, “Design of electrically calibrated pyroelectric radiometer,” J. Chin. Inst. Eng. 12, 239–247 (1989).
[CrossRef]

J. Clin. Eng. (1)

M. E. Weiss, A. F. Pue, J. Smith, “Laboratory and hospital testing of new infrared tympanic thermometer,” J. Clin. Eng. 16, 137–144 (1991).
[PubMed]

Measurement (1)

F. Cascetta, “An evaluation of the performance of an infrared tympanic thermometer,” Measurement 16, 239–246 (1995).
[CrossRef]

Opt. Eng. (1)

W. M. Doyle, B. C. Mcintosh, J. Geist, “Implementation of a system optical calibration based on pyroelectric radiometry,” Opt. Eng. 15, 541–548 (1976).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

T. H. Benzinger, “On physical regulation and the sense of temperature in man,” Proc. Natl. Acad. Sci. 45, 645–649 (1959).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Copper, “Minimum detectable power of a pyroelectric thermal receiver,” Rev. Sci. Instrum. 33, 92–95 (1962).
[CrossRef]

Trans. Am. Soc. Mech. Eng. (1)

A. K. Oppenhein, “Radiative analysis by network method,” Trans. Am. Soc. Mech. Eng. 78, 725–735 (1956).

Other (8)

J. P. Holman, Heat Transfer, 7th ed. (McGraw-Hill, New York, 1992), pp. 385–506.

R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969), pp. 20–113.

M. Ou-Yang, “Implementation of absolute optical power meter with single-chip controller,” M.S. thesis (National Chiao Tung University, Taiwan, 1993).

J. G. Webster, Encyclopedia of Medical Devices and Instrumentation, Vol. 4 (Wiley, New York, 1988), pp. 2723–2730.

G. J. O’Hara, D. B. Phillips , “Method and apparatus for measuring internal body temperature utilizing infrared emissions,” U.S. patent4,602,642 (29July1986).

J. Fraden, “Infrared electronic thermometer and method for measuring temperature,” U.S. patent4,797,840 (10January1989).

F. Hengstberger, Absolute Radiometry: Electrically Calibrated Thermal Detectors of Optical Radiation (Academic, New York, 1989), pp. 1–116.
[CrossRef]

J. Fraden, “Noncontact temperature measurements in medicine,” in Bioinstrumentation and Biosensors (Marcel Dekker, New York, 1991), pp. 511–549.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the tympanic thermometry.

Fig. 2
Fig. 2

Opto-electro-thermal PSPICE model of the present tympanic thermometer: (a) radiant network model, (b) electrothermal model of the pyroelectric sensor model, and (c) associated circuit.

Fig. 3
Fig. 3

Plot of the maximal allowable temperature drift δT bm of the barrel with different inner surface emissivities and lengths. When these are 0.02 and 3 cm, respectively, δT bm is 0.18 °C as indicated by the dot point.

Fig. 4
Fig. 4

Configuration of the fabricated electrically calibrated pyroelectric detector: (a) cross section, (b) bird’s-eye view.

Fig. 5
Fig. 5

(a) Readout and calibration circuits including driving circuit, ECP, and dummy sensors, preamplifier, integrator, and peak holder. (b) Timing diagram.

Fig. 6
Fig. 6

Simulation results of the model in Fig. 2 showing the relation of the measured temperature to the thermal conductance and pyroelectric constant. A measured temperature of 37 °C is set to represent a human’s eardrum when the device parameters are p = 6 × 10-9 C/cm2, G = 0.0008 W/°C, ℋ = 0.003 J/°C, and ℜ v = 1252 V/W.

Fig. 7
Fig. 7

Measurement errors as a function of ambient temperature. Cross points are from our thermometer without the ECP method being utilized. Circles are from the present ECP method, and solid squares are the data taken by Cascetta8 from a commercial tympanic thermometer.

Fig. 8
Fig. 8

Error distribution of 100 experiments in various conditions. The mean error is 0.008 °C, and the standard deviation is 0.06 °C. These results imply that each measurement has a 90% confidence for an accuracy within 0.1 °C.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

T e = c Q d ε d ε e + T d 4 1 / 4 = c V s ε d ε e v + T d 4 1 / 4 ,
Q i = ε i 1 - ε i A i J i - E i = 1 r i J i - E i ,
Q ij = J i A i F ij ,
F ij = 1 A i A i A j cos   θ i cos   θ j π R ij 2 d A i d A j .
A i F ij = A j F ji .
j = 1 N F ij 1
Q i = j = 1 N A j F ji J j - A i J i = j = 1 N A i F ij J j - J i = j = 1 N 1 r ij J j - J i ,
F de = 1 + 2 L 2 D 2 - 2 D L D + L 1 / 2 .
F db = F eb = 1 - F de .
r x = r de r eb r de + r eb + r db ,
r y = r de r db r de + r eb + r db ,
r z = r db r eb r de + r eb + r db ,
Q d = G e E e + G b E b + G d E d = G e σ T e 4 + G b σ T b 4 + G d σ T d 4
G e = r z + r b r d + r x r z + r b + r y + r e r z + r b + r d + r x ,
G b = r y + r e r d + r x r y + r e + r z + r b r y + r e + r d + r x ,
G e = - r z + r b + r y + r e r z + r b r y + r e + r d + r x r z + r b + r y + r e .
T e = Q d σ G e - G d G e T d 4 - G b G e T b 4 1 / 4 .
T e = Q d σ G e + T a 4 1 / 4 = 1 σ G e V s v + T a 4 1 / 4 .
δ T e = - G b G e · T b 3 · Q d σ G e - G d G e T d 4 - G b G e T b 4 - 3 / 4 T a · δ T b
| δ T bm | = | δ T e | · T e T a 3 · G e G b = 0.095 × G e G b .
  d θ t d t + G θ t = Q d t ,
C L d V t d t + 1 R L V t = p A d d θ t d t .
Q d t = Q do u t - u t - t o ,
S o = 0 t o   V t d t = p A d C L τ e τ t τ e - τ t - τ e exp - t o τ e + τ t exp - t o τ t + τ e - τ t · Q do = v · Q do ,
τ e = R L C L ,     τ t = / G ,
T e = Q de σ G e S o S e + T a 4 1 / 4 .

Metrics