Abstract

We show the possibility of simultaneously eliminating all third- and fifth-order monochromatic aberrations by using an objective consisting of three cemented lenses with radial distribution of refractive indices. We present design procedures for removal of these aberrations and reduction of residual higher-order aberrations.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Moore, “Design of singlets with continuously varying indices of refraction,” J. Opt. Soc. Am. 61, 886–894 (1971).
    [CrossRef]
  2. D. T. Moore, R. T. Salvage, “Radial gradient-index lenses with zero Petzval aberration,” Appl. Opt. 19, 1081–1086 (1980).
    [CrossRef] [PubMed]
  3. G. I. Greisukh, I. M. Efimenko, S. A. Stepanov, Optics of Gradient-Index and Diffractive Elements (Soviet Radio, Moscow, 1990).
  4. G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Optical Engineering Press, Bellingham, Wash., 1997), Sec. 6.3.
  5. G. G. Slusarev, Methods of Optical Systems Design (Mashinostoenie, Leningrad, 1969).
  6. G. Schulz, “Primary aberration-free imaging by three refracting surfaces,” J. Opt. Soc. Am. 70, 1149–1152 (1980).
    [CrossRef]
  7. P. J. Sands, “Inhomogeneous lenses. III. Paraxial optics,” J. Opt. Soc. Am. 61, 879–885 (1971).
    [CrossRef]
  8. P. J. Sands, “Third-order aberrations of inhomogeneous lenses,” J. Opt. Soc. Am. 60, 1436–1443 (1970).
    [CrossRef]
  9. D. T. Moore, P. J. Sands, “Third-order aberrations of inhomogeneous lenses with cylindrical index distributions,” J. Opt. Soc. Am. 61, 1195–1201 (1971).
    [CrossRef]
  10. T. B. Andersen, “Automatic computation of optical aberration coefficients,” Appl. Opt. 19, 3800–3816 (1980).
    [CrossRef] [PubMed]
  11. S. A. Stepanov, G. I. Greisukh, “Calculation of the pseudoray path through optical systems including graded-index and diffraction lenses,” Opt. Spectrosc. 81, 638–641 (1996).
  12. Ref. 4, Sec. 5.3.
  13. T. Katayama, K. P. Miyake, “The evaluation of optical image by spot diagram,” Sci. Light 12, 50–59 (1963).
  14. Ref. 4, Sec. 3.2.
  15. Ref. 4, Sec. 7.2.
  16. Ref. 4, Secs. 7.2–7.4.

1996 (1)

S. A. Stepanov, G. I. Greisukh, “Calculation of the pseudoray path through optical systems including graded-index and diffraction lenses,” Opt. Spectrosc. 81, 638–641 (1996).

1980 (3)

1971 (3)

1970 (1)

1963 (1)

T. Katayama, K. P. Miyake, “The evaluation of optical image by spot diagram,” Sci. Light 12, 50–59 (1963).

Andersen, T. B.

Bobrov, S. T.

G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Optical Engineering Press, Bellingham, Wash., 1997), Sec. 6.3.

Efimenko, I. M.

G. I. Greisukh, I. M. Efimenko, S. A. Stepanov, Optics of Gradient-Index and Diffractive Elements (Soviet Radio, Moscow, 1990).

Greisukh, G. I.

S. A. Stepanov, G. I. Greisukh, “Calculation of the pseudoray path through optical systems including graded-index and diffraction lenses,” Opt. Spectrosc. 81, 638–641 (1996).

G. I. Greisukh, I. M. Efimenko, S. A. Stepanov, Optics of Gradient-Index and Diffractive Elements (Soviet Radio, Moscow, 1990).

G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Optical Engineering Press, Bellingham, Wash., 1997), Sec. 6.3.

Katayama, T.

T. Katayama, K. P. Miyake, “The evaluation of optical image by spot diagram,” Sci. Light 12, 50–59 (1963).

Miyake, K. P.

T. Katayama, K. P. Miyake, “The evaluation of optical image by spot diagram,” Sci. Light 12, 50–59 (1963).

Moore, D. T.

Salvage, R. T.

Sands, P. J.

Schulz, G.

Slusarev, G. G.

G. G. Slusarev, Methods of Optical Systems Design (Mashinostoenie, Leningrad, 1969).

Stepanov, S. A.

S. A. Stepanov, G. I. Greisukh, “Calculation of the pseudoray path through optical systems including graded-index and diffraction lenses,” Opt. Spectrosc. 81, 638–641 (1996).

G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Optical Engineering Press, Bellingham, Wash., 1997), Sec. 6.3.

G. I. Greisukh, I. M. Efimenko, S. A. Stepanov, Optics of Gradient-Index and Diffractive Elements (Soviet Radio, Moscow, 1990).

Appl. Opt. (2)

J. Opt. Soc. Am. (5)

Opt. Spectrosc. (1)

S. A. Stepanov, G. I. Greisukh, “Calculation of the pseudoray path through optical systems including graded-index and diffraction lenses,” Opt. Spectrosc. 81, 638–641 (1996).

Sci. Light (1)

T. Katayama, K. P. Miyake, “The evaluation of optical image by spot diagram,” Sci. Light 12, 50–59 (1963).

Other (7)

Ref. 4, Sec. 3.2.

Ref. 4, Sec. 7.2.

Ref. 4, Secs. 7.2–7.4.

Ref. 4, Sec. 5.3.

G. I. Greisukh, I. M. Efimenko, S. A. Stepanov, Optics of Gradient-Index and Diffractive Elements (Soviet Radio, Moscow, 1990).

G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Optical Engineering Press, Bellingham, Wash., 1997), Sec. 6.3.

G. G. Slusarev, Methods of Optical Systems Design (Mashinostoenie, Leningrad, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Cemented radial gradient-index triplet.

Tables (2)

Tables Icon

Table 1 Design Parameters of the Triplet Corrected for the Third- and Fifth-Order Monochromatic Aberrations

Tables Icon

Table 2 Additional Design Parameters of Lenses and Performance of the Triplets, Obtained before and after Optimization (f′ = 24 mm, λ = 0.4416 μm, t = 0.11f′)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n ρ = k = 0   n k ρ 2 k ,
f c 1 , ,   c 4 ,   d i ,   n 0 i ,   n 1 i = 1 , s F c 1 , ,   c 4 ,   d i ,   n 0 i ,   n 1 i = B .
M = A 0 + A 1 n 3 1 + A 2 n 3 2 + A 3 n 3 3 ,
A i = M i - A 0 / n 3 i       i = 1 3 ,
Q 4 = δ R 1 N j = 1 N 1 Δ r j + δ R 2 1 / 2 ,

Metrics