Abstract

A homogeneous ferrofluid composition capable of reversibly forming ordered crystalline two-dimensional hexagonal lattices of magnetic particle columns in a thin film under the influence of external magnetic fields has been synthesized. We can manipulate the spacings between the particles columns by adjusting parameters such as external magnetic field strength, film thickness, rate of change of the field strength, and concentration of magnetic particles in the ferrofluid. These spacings between particle columns are of the order of several micrometers and are capable of diffracting visible light to produce monochromatic interference colors. We can change the resulting colors by altering the lattice spacing to exhibit the feasibility of generating monochromatic colors.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fermigier, A. P. Gast, “Structure evolution in a paramagnetic latex suspension,” J. Colloid Interface Sci. 154, 522–539 (1992).
    [CrossRef]
  2. D. Wirtz, M. Fermigier, “One-dimensional patterns and wavelength selection in magnetic fluids,” Phys. Rev. Lett. 72, 2294–2297 (1994).
    [CrossRef] [PubMed]
  3. H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers, R. E. Rosensweig, “Periodic branched structures in a phase-separated mag- netic colloid,” Phys. Rev. Lett. 72, 1929–1932 (1994).
    [CrossRef] [PubMed]
  4. J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74, 2828–2831 (1995).
    [CrossRef] [PubMed]
  5. A. T. Skjeltorp, “One- and two-dimensional crystallization of magnetic holes,” Phys. Rev. Lett. 51, 2306–2309 (1983).
    [CrossRef]
  6. C.-Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, H. C. Yang, “Ordered structures in Fe3O4 kerosene-based ferrofluids,” J. Appl. Phys. 81, 4275–4277 (1997).
    [CrossRef]
  7. W. C. Elmore, “Ferromagnetic colloid for studying magnetic structure,” Phys. Rev. 54, 309–310 (1938).
    [CrossRef]

1997 (1)

C.-Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, H. C. Yang, “Ordered structures in Fe3O4 kerosene-based ferrofluids,” J. Appl. Phys. 81, 4275–4277 (1997).
[CrossRef]

1995 (1)

J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74, 2828–2831 (1995).
[CrossRef] [PubMed]

1994 (2)

D. Wirtz, M. Fermigier, “One-dimensional patterns and wavelength selection in magnetic fluids,” Phys. Rev. Lett. 72, 2294–2297 (1994).
[CrossRef] [PubMed]

H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers, R. E. Rosensweig, “Periodic branched structures in a phase-separated mag- netic colloid,” Phys. Rev. Lett. 72, 1929–1932 (1994).
[CrossRef] [PubMed]

1992 (1)

M. Fermigier, A. P. Gast, “Structure evolution in a paramagnetic latex suspension,” J. Colloid Interface Sci. 154, 522–539 (1992).
[CrossRef]

1983 (1)

A. T. Skjeltorp, “One- and two-dimensional crystallization of magnetic holes,” Phys. Rev. Lett. 51, 2306–2309 (1983).
[CrossRef]

1938 (1)

W. C. Elmore, “Ferromagnetic colloid for studying magnetic structure,” Phys. Rev. 54, 309–310 (1938).
[CrossRef]

Bibette, J.

J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74, 2828–2831 (1995).
[CrossRef] [PubMed]

Boyd, C.

H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers, R. E. Rosensweig, “Periodic branched structures in a phase-separated mag- netic colloid,” Phys. Rev. Lett. 72, 1929–1932 (1994).
[CrossRef] [PubMed]

Cebers, A.

H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers, R. E. Rosensweig, “Periodic branched structures in a phase-separated mag- netic colloid,” Phys. Rev. Lett. 72, 1929–1932 (1994).
[CrossRef] [PubMed]

Elmore, W. C.

W. C. Elmore, “Ferromagnetic colloid for studying magnetic structure,” Phys. Rev. 54, 309–310 (1938).
[CrossRef]

Fermigier, M.

D. Wirtz, M. Fermigier, “One-dimensional patterns and wavelength selection in magnetic fluids,” Phys. Rev. Lett. 72, 2294–2297 (1994).
[CrossRef] [PubMed]

M. Fermigier, A. P. Gast, “Structure evolution in a paramagnetic latex suspension,” J. Colloid Interface Sci. 154, 522–539 (1992).
[CrossRef]

Flores, G. A.

J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74, 2828–2831 (1995).
[CrossRef] [PubMed]

Gast, A. P.

M. Fermigier, A. P. Gast, “Structure evolution in a paramagnetic latex suspension,” J. Colloid Interface Sci. 154, 522–539 (1992).
[CrossRef]

Hong, C.-Y.

C.-Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, H. C. Yang, “Ordered structures in Fe3O4 kerosene-based ferrofluids,” J. Appl. Phys. 81, 4275–4277 (1997).
[CrossRef]

Horng, H. E.

C.-Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, H. C. Yang, “Ordered structures in Fe3O4 kerosene-based ferrofluids,” J. Appl. Phys. 81, 4275–4277 (1997).
[CrossRef]

Hsu, C. J.

C.-Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, H. C. Yang, “Ordered structures in Fe3O4 kerosene-based ferrofluids,” J. Appl. Phys. 81, 4275–4277 (1997).
[CrossRef]

Ivey, M. L.

J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74, 2828–2831 (1995).
[CrossRef] [PubMed]

Jang, I. J.

C.-Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, H. C. Yang, “Ordered structures in Fe3O4 kerosene-based ferrofluids,” J. Appl. Phys. 81, 4275–4277 (1997).
[CrossRef]

Javier, K.

J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74, 2828–2831 (1995).
[CrossRef] [PubMed]

Lawrence, E. M.

J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74, 2828–2831 (1995).
[CrossRef] [PubMed]

Liu, J.

J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74, 2828–2831 (1995).
[CrossRef] [PubMed]

Luo, W.

H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers, R. E. Rosensweig, “Periodic branched structures in a phase-separated mag- netic colloid,” Phys. Rev. Lett. 72, 1929–1932 (1994).
[CrossRef] [PubMed]

Richard, J.

J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74, 2828–2831 (1995).
[CrossRef] [PubMed]

Rosensweig, R. E.

H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers, R. E. Rosensweig, “Periodic branched structures in a phase-separated mag- netic colloid,” Phys. Rev. Lett. 72, 1929–1932 (1994).
[CrossRef] [PubMed]

Skjeltorp, A. T.

A. T. Skjeltorp, “One- and two-dimensional crystallization of magnetic holes,” Phys. Rev. Lett. 51, 2306–2309 (1983).
[CrossRef]

Wang, H.

H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers, R. E. Rosensweig, “Periodic branched structures in a phase-separated mag- netic colloid,” Phys. Rev. Lett. 72, 1929–1932 (1994).
[CrossRef] [PubMed]

Wirtz, D.

D. Wirtz, M. Fermigier, “One-dimensional patterns and wavelength selection in magnetic fluids,” Phys. Rev. Lett. 72, 2294–2297 (1994).
[CrossRef] [PubMed]

Wu, A.

J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74, 2828–2831 (1995).
[CrossRef] [PubMed]

Yang, H. C.

C.-Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, H. C. Yang, “Ordered structures in Fe3O4 kerosene-based ferrofluids,” J. Appl. Phys. 81, 4275–4277 (1997).
[CrossRef]

Yao, Y. D.

C.-Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, H. C. Yang, “Ordered structures in Fe3O4 kerosene-based ferrofluids,” J. Appl. Phys. 81, 4275–4277 (1997).
[CrossRef]

Zhu, Y.

H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers, R. E. Rosensweig, “Periodic branched structures in a phase-separated mag- netic colloid,” Phys. Rev. Lett. 72, 1929–1932 (1994).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

C.-Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, H. C. Yang, “Ordered structures in Fe3O4 kerosene-based ferrofluids,” J. Appl. Phys. 81, 4275–4277 (1997).
[CrossRef]

J. Colloid Interface Sci. (1)

M. Fermigier, A. P. Gast, “Structure evolution in a paramagnetic latex suspension,” J. Colloid Interface Sci. 154, 522–539 (1992).
[CrossRef]

Phys. Rev. (1)

W. C. Elmore, “Ferromagnetic colloid for studying magnetic structure,” Phys. Rev. 54, 309–310 (1938).
[CrossRef]

Phys. Rev. Lett. (4)

D. Wirtz, M. Fermigier, “One-dimensional patterns and wavelength selection in magnetic fluids,” Phys. Rev. Lett. 72, 2294–2297 (1994).
[CrossRef] [PubMed]

H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers, R. E. Rosensweig, “Periodic branched structures in a phase-separated mag- netic colloid,” Phys. Rev. Lett. 72, 1929–1932 (1994).
[CrossRef] [PubMed]

J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74, 2828–2831 (1995).
[CrossRef] [PubMed]

A. T. Skjeltorp, “One- and two-dimensional crystallization of magnetic holes,” Phys. Rev. Lett. 51, 2306–2309 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Flow chart of the steps for preparation of a homogeneous ferrofluid capable of forming ordered two-dimensional lattices when a thin film of the fluid is subjected to an external magnetic field. An 8M NaOH solution was added to the mixture of FeSO4 · 7H2O and FeCl3 · 6H2O to maintain the pH at 11.5 during the heating process. The co-precipitation of Fe3O4 occurs over an ∼20-min time period. Oleic acid is added to the solution out of which the Fe3O4 has precipitated to coat the Fe3O4 particles and prevent agglomeration. This process takes ∼30 min and is followed by adding HCl to the reaction mix to protonate the carboxylate group on the oleic acid and thereby replace the Na+ counter ion with a proton. The next step is decantation. During this step, deionized water is added to remove remaining counter ions of HCl and NaCl from the surfactant-coated Fe3O4 product. Washing is achieved by dispersing the settled Fe3O4 in kerosene. The mix is subjected to a short, low-speed spin in a centrifuge to remove remaining salt residues and large particles. The dehydration can be achieved by suspending the remaining Fe3O4 in acetone and drying it in a oven. After the particles have been dehydrated, they are again dispersed in kerosene, and the fluid is subjected to another short, low-speed spin in a centrifuge. This spin pellets larger or aggregated particles. The liquid sitting above any pellet that may be formed in this spin is the homogeneous magnetic fluid.

Fig. 2
Fig. 2

Evolution of the pattern formation in a homogeneous ferrofluidic thin film in response to an externally applied magnetic field oriented perpendicular to the plane of the thin film. Images of the thin film under the influence of perpendicular magnetic fields were captured from a CCD video camera mounted on a Zeiss optical microscope, and written to computer. A simple computer program was written to control the image acquisition and the power to the solenoids used for generating the magnetic fields. This permitted easy manipulation of final field strength and its rate of change (dH/dt). The scale bar on the image equals 10 μm: (a) disorder quantum column, H = 70 Oe, L = 6 μm, dH/dt = 20 Oe/s; (b) hexagonal pattern, H = 100 Oe, L = 6 μm, dH/dt = 20 Oe/s; (c) hexagonal pattern, H = 300 Oe, L = 6 μm, dH/dt = 20 Oe/s; and (d) labyrinthine pattern, H = 400 Oe, L = 6 μm, dH/dt = 20 Oe/s.

Fig. 3
Fig. 3

Two-dimensional hexagonal arrays formed in films with different thicknesses in response to a perpendicular, 100-Oe magnetic field: (a) L = 10 μm, (b) L = 6 μm, (c) L = 4 μm, and (d) L = 2 μm.

Fig. 4
Fig. 4

Relation of the distance between particle columns in two-dimensional hexagonal arrays to magnetic field strength and film thickness.

Fig. 5
Fig. 5

Setup used for demonstrating light diffraction phenomena generated by ordered structures in homogeneous ferrofluidic thin film. A pair of uniform solenoids was used to generate perpendicular magnetic fields, and a halogen lamp was used to generate white light. The light rays were made to be near parallel by passing them through a telescope. Two optical lenses were used to make the near-parallel light parallel. An aperture was placed between the two lenses to control the size of the light beam. The parallel white light was reflected by a mirror located beneath the thin film. The angle of the mirror to the light beam was adjustable by turning the mirror plane, resulting in a change of the incident angle of the light to the film.

Fig. 6
Fig. 6

Image of a spectrum of colors produced by a ferrofluidic drop in which the thickness of the drop varies from 2 to 10 μm, H = 150 Oe, dH/dt = 500 Oe/s. The scale bar corresponds to 2 mm.

Fig. 7
Fig. 7

Images showing different colors produced by a homogeneous ferrofluid thin film as the externally applied magnetic field strength varied. The scale bar corresponds to 2 mm.

Fig. 8
Fig. 8

Cross section of a homogeneous ferrofluidic thin film for the light diffraction concept.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I     sin 2 N φ / 2 sin 2 φ / 2 ,
φ 2     π λ   d sin   θ +   sin   θ = κ π ,

Metrics