Abstract

We describe the quantitative analysis of some metabolic gases by multichannel Raman spectroscopy. Raman spectra were measured for air, acetone, ammonia, carbon dioxide, and mixed gas consisting of acetone, ammonia, and air. We designed a new elliptic–spherical integration type of cell holder to obtain the Raman spectra of gases with a high signal-to-noise ratio. Concentrations of acetone, ammonia, and carbon dioxide were determined by the peak intensities of Raman bands at 2940, 3228, and 1385 cm-1, respectively. To compensate for the fluctuations of Raman intensities caused by several factors, such as the fluctuations of laser power, the peak intensity of a band at 2324 cm-1 due to nitrogen gas was used as an internal intensity standard. The correlation coefficient between the corrected Raman intensity at 2940 cm-1 and the concentration of acetone was calculated to be 0.984 for a concentration range of 2–12 ppm. The detection limit of acetone gas was found to be 2 ppm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Manolis, “The diagnostic potential of breath analysis,” Clin. Chem. 29, 5–15 (1983).
    [PubMed]
  2. J. A. Perman, “Clinical application of breath hydrogen measurements,” Can. J. Physiol. Pharmacol. 69, 111–115 (1991).
    [CrossRef] [PubMed]
  3. M. Phillips, J. Greenberg, “Ion-trap detection of volatile organic compounds in alveolar breath,” Clin. Chem. 38, 60–65 (1992).
    [PubMed]
  4. H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.
  5. H. Ueda, M. Hiromoto, H. Uenoyama, H. Yamamoto, K. Shii, S. Baba, R. J. Kolaja, “Development of a breath ketone analyser for clinical practice,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier, Amsterdam, 1995), pp. 1138–1142.
  6. A. J. Berger, Y. Wang, D. M. Sammeth, I. Itzkan, K. Kneipp, M. S. Feld, “Aqueous dissolved gas measurements using near-infrared Raman spectroscopy,” Appl. Spectrosc. 49, 1164–1169 (1995).
    [CrossRef]
  7. R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregosis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monitor. 2, 215–222 (1986).
    [CrossRef]
  8. W. F. Murphy, “Chemical applications of gas-phase Raman spectroscopy,” in Analytical Raman Spectroscopy (Wiley Interscience, New York, 1991), pp. 425–451.
  9. X. Dou, Y. Yamaguchi, H. Yamamoto, H. Uenoyama, Y. Ozaki, “Biological applications of anti-Stokes Raman spectroscopy: quantitative analysis of glucose in plasma and serum by a highly sensitive multichannel Raman spectrometer,” Appl. Spectrosc. 50, 1301–1306 (1996).
    [CrossRef]
  10. X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine by anti-Stokes Raman spectroscopy,” Biospectroscopy 3, 113–120 (1997).
    [CrossRef]
  11. X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “Novel enzyme-immunoassay utilizing surface-enhanced Raman scattering of enzyme reaction product,” Anal. Chem. 69, 1492–1495 (1997).
    [CrossRef]
  12. X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples,” Vib. Spectrosc. 14, 199–205 (1997).
    [CrossRef]

1997 (3)

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine by anti-Stokes Raman spectroscopy,” Biospectroscopy 3, 113–120 (1997).
[CrossRef]

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “Novel enzyme-immunoassay utilizing surface-enhanced Raman scattering of enzyme reaction product,” Anal. Chem. 69, 1492–1495 (1997).
[CrossRef]

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples,” Vib. Spectrosc. 14, 199–205 (1997).
[CrossRef]

1996 (1)

1995 (1)

1992 (1)

M. Phillips, J. Greenberg, “Ion-trap detection of volatile organic compounds in alveolar breath,” Clin. Chem. 38, 60–65 (1992).
[PubMed]

1991 (1)

J. A. Perman, “Clinical application of breath hydrogen measurements,” Can. J. Physiol. Pharmacol. 69, 111–115 (1991).
[CrossRef] [PubMed]

1986 (1)

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregosis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monitor. 2, 215–222 (1986).
[CrossRef]

1983 (1)

A. Manolis, “The diagnostic potential of breath analysis,” Clin. Chem. 29, 5–15 (1983).
[PubMed]

Baba, S.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

H. Ueda, M. Hiromoto, H. Uenoyama, H. Yamamoto, K. Shii, S. Baba, R. J. Kolaja, “Development of a breath ketone analyser for clinical practice,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier, Amsterdam, 1995), pp. 1138–1142.

Benner, R. E.

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregosis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monitor. 2, 215–222 (1986).
[CrossRef]

Berger, A. J.

Coleman, D. L.

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregosis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monitor. 2, 215–222 (1986).
[CrossRef]

Doi, S.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine by anti-Stokes Raman spectroscopy,” Biospectroscopy 3, 113–120 (1997).
[CrossRef]

Dou, X.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine by anti-Stokes Raman spectroscopy,” Biospectroscopy 3, 113–120 (1997).
[CrossRef]

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “Novel enzyme-immunoassay utilizing surface-enhanced Raman scattering of enzyme reaction product,” Anal. Chem. 69, 1492–1495 (1997).
[CrossRef]

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples,” Vib. Spectrosc. 14, 199–205 (1997).
[CrossRef]

X. Dou, Y. Yamaguchi, H. Yamamoto, H. Uenoyama, Y. Ozaki, “Biological applications of anti-Stokes Raman spectroscopy: quantitative analysis of glucose in plasma and serum by a highly sensitive multichannel Raman spectrometer,” Appl. Spectrosc. 50, 1301–1306 (1996).
[CrossRef]

Feld, M. S.

Greenberg, J.

M. Phillips, J. Greenberg, “Ion-trap detection of volatile organic compounds in alveolar breath,” Clin. Chem. 38, 60–65 (1992).
[PubMed]

Gregosis, D. E.

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregosis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monitor. 2, 215–222 (1986).
[CrossRef]

Hara, Y.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

Hari, J.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

Hiromoto, M.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

H. Ueda, M. Hiromoto, H. Uenoyama, H. Yamamoto, K. Shii, S. Baba, R. J. Kolaja, “Development of a breath ketone analyser for clinical practice,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier, Amsterdam, 1995), pp. 1138–1142.

Hozumi, T.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

Ishida, Y.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

Itzkan, I.

Kato, J.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

Kazumi, T.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

Kneipp, K.

Kolaja, R. J.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

H. Ueda, M. Hiromoto, H. Uenoyama, H. Yamamoto, K. Shii, S. Baba, R. J. Kolaja, “Development of a breath ketone analyser for clinical practice,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier, Amsterdam, 1995), pp. 1138–1142.

Kurusu, M.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

Manolis, A.

A. Manolis, “The diagnostic potential of breath analysis,” Clin. Chem. 29, 5–15 (1983).
[PubMed]

Murphy, W. F.

W. F. Murphy, “Chemical applications of gas-phase Raman spectroscopy,” in Analytical Raman Spectroscopy (Wiley Interscience, New York, 1991), pp. 425–451.

Narutaki, K.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

Ozaki, Y.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine by anti-Stokes Raman spectroscopy,” Biospectroscopy 3, 113–120 (1997).
[CrossRef]

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “Novel enzyme-immunoassay utilizing surface-enhanced Raman scattering of enzyme reaction product,” Anal. Chem. 69, 1492–1495 (1997).
[CrossRef]

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples,” Vib. Spectrosc. 14, 199–205 (1997).
[CrossRef]

X. Dou, Y. Yamaguchi, H. Yamamoto, H. Uenoyama, Y. Ozaki, “Biological applications of anti-Stokes Raman spectroscopy: quantitative analysis of glucose in plasma and serum by a highly sensitive multichannel Raman spectrometer,” Appl. Spectrosc. 50, 1301–1306 (1996).
[CrossRef]

Perman, J. A.

J. A. Perman, “Clinical application of breath hydrogen measurements,” Can. J. Physiol. Pharmacol. 69, 111–115 (1991).
[CrossRef] [PubMed]

Phillips, M.

M. Phillips, J. Greenberg, “Ion-trap detection of volatile organic compounds in alveolar breath,” Clin. Chem. 38, 60–65 (1992).
[PubMed]

Sammeth, D. M.

Shii, K.

H. Ueda, M. Hiromoto, H. Uenoyama, H. Yamamoto, K. Shii, S. Baba, R. J. Kolaja, “Development of a breath ketone analyser for clinical practice,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier, Amsterdam, 1995), pp. 1138–1142.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

Takama, T.

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples,” Vib. Spectrosc. 14, 199–205 (1997).
[CrossRef]

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “Novel enzyme-immunoassay utilizing surface-enhanced Raman scattering of enzyme reaction product,” Anal. Chem. 69, 1492–1495 (1997).
[CrossRef]

Ueda, H.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

H. Ueda, M. Hiromoto, H. Uenoyama, H. Yamamoto, K. Shii, S. Baba, R. J. Kolaja, “Development of a breath ketone analyser for clinical practice,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier, Amsterdam, 1995), pp. 1138–1142.

Uenoyama, H.

X. Dou, Y. Yamaguchi, H. Yamamoto, H. Uenoyama, Y. Ozaki, “Biological applications of anti-Stokes Raman spectroscopy: quantitative analysis of glucose in plasma and serum by a highly sensitive multichannel Raman spectrometer,” Appl. Spectrosc. 50, 1301–1306 (1996).
[CrossRef]

H. Ueda, M. Hiromoto, H. Uenoyama, H. Yamamoto, K. Shii, S. Baba, R. J. Kolaja, “Development of a breath ketone analyser for clinical practice,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier, Amsterdam, 1995), pp. 1138–1142.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

VanWagenen, R. A.

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregosis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monitor. 2, 215–222 (1986).
[CrossRef]

Wang, Y.

Westenskow, D. R.

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregosis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monitor. 2, 215–222 (1986).
[CrossRef]

Yamaguchi, Y.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine by anti-Stokes Raman spectroscopy,” Biospectroscopy 3, 113–120 (1997).
[CrossRef]

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “Novel enzyme-immunoassay utilizing surface-enhanced Raman scattering of enzyme reaction product,” Anal. Chem. 69, 1492–1495 (1997).
[CrossRef]

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples,” Vib. Spectrosc. 14, 199–205 (1997).
[CrossRef]

X. Dou, Y. Yamaguchi, H. Yamamoto, H. Uenoyama, Y. Ozaki, “Biological applications of anti-Stokes Raman spectroscopy: quantitative analysis of glucose in plasma and serum by a highly sensitive multichannel Raman spectrometer,” Appl. Spectrosc. 50, 1301–1306 (1996).
[CrossRef]

Yamamoto, H.

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples,” Vib. Spectrosc. 14, 199–205 (1997).
[CrossRef]

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “Novel enzyme-immunoassay utilizing surface-enhanced Raman scattering of enzyme reaction product,” Anal. Chem. 69, 1492–1495 (1997).
[CrossRef]

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine by anti-Stokes Raman spectroscopy,” Biospectroscopy 3, 113–120 (1997).
[CrossRef]

X. Dou, Y. Yamaguchi, H. Yamamoto, H. Uenoyama, Y. Ozaki, “Biological applications of anti-Stokes Raman spectroscopy: quantitative analysis of glucose in plasma and serum by a highly sensitive multichannel Raman spectrometer,” Appl. Spectrosc. 50, 1301–1306 (1996).
[CrossRef]

H. Ueda, M. Hiromoto, H. Uenoyama, H. Yamamoto, K. Shii, S. Baba, R. J. Kolaja, “Development of a breath ketone analyser for clinical practice,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier, Amsterdam, 1995), pp. 1138–1142.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

Anal. Chem. (1)

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “Novel enzyme-immunoassay utilizing surface-enhanced Raman scattering of enzyme reaction product,” Anal. Chem. 69, 1492–1495 (1997).
[CrossRef]

Appl. Spectrosc. (2)

Biospectroscopy (1)

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine by anti-Stokes Raman spectroscopy,” Biospectroscopy 3, 113–120 (1997).
[CrossRef]

Can. J. Physiol. Pharmacol. (1)

J. A. Perman, “Clinical application of breath hydrogen measurements,” Can. J. Physiol. Pharmacol. 69, 111–115 (1991).
[CrossRef] [PubMed]

Clin. Chem. (2)

M. Phillips, J. Greenberg, “Ion-trap detection of volatile organic compounds in alveolar breath,” Clin. Chem. 38, 60–65 (1992).
[PubMed]

A. Manolis, “The diagnostic potential of breath analysis,” Clin. Chem. 29, 5–15 (1983).
[PubMed]

J. Clin. Monitor. (1)

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregosis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monitor. 2, 215–222 (1986).
[CrossRef]

Vib. Spectrosc. (1)

X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples,” Vib. Spectrosc. 14, 199–205 (1997).
[CrossRef]

Other (3)

W. F. Murphy, “Chemical applications of gas-phase Raman spectroscopy,” in Analytical Raman Spectroscopy (Wiley Interscience, New York, 1991), pp. 425–451.

H. Yamamoto, H. Uenoyama, H. Ueda, M. Hiromoto, K. Shii, J. Hari, T. Hozumi, Y. Ishida, T. Kazumi, Y. Hara, M. Kurusu, J. Kato, K. Narutaki, S. Baba, R. J. Kolaja, “A breath ketone determination method as a noninvasive test for the metabolic indicator in diabetes and obesity,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier Science, Amsterdam, 1995), pp. 617–621.

H. Ueda, M. Hiromoto, H. Uenoyama, H. Yamamoto, K. Shii, S. Baba, R. J. Kolaja, “Development of a breath ketone analyser for clinical practice,” in Diabetes 1994, S. Baba, T. Kaneko, eds. (Elsevier, Amsterdam, 1995), pp. 1138–1142.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of a Raman cell and its holder, which is newly devised in the present study.

Fig. 2
Fig. 2

Result of the simulation for the reflection of Raman scattering light (A) in a spherical integration type of cell holder with gilding and rough coating and (B) in an elliptic–spherical integration type of cell holder with gilding.

Fig. 3
Fig. 3

Raman spectra of acetone gas in air measured with (A) an elliptic–spherical integration type of cell holder, (B) a spherical integration type of cell holder, and (C) the quartz cell without cell holder.

Fig. 4
Fig. 4

Raman spectrum of air under atmospheric pressure.

Fig. 5
Fig. 5

Raman spectra of acetone gas of (a) 20 and (b) 2 ppm in air.

Fig. 6
Fig. 6

(a) Plots of the peak intensity of the band at 2940 cm-1 versus the concentration of acetone gas in a concentration range of 20–100 ppm without the intensity correction by nitrogen gas intensity at 2324 cm-1. (b) Plots of the normalized intensity of the band at 2940 cm-1 (I 2940/I 2324) versus the concentration of acetone gas in the concentration range of 20–100 ppm. (c) Plots of the normalized peak intensity of the band at 2940 cm-1 (I 2940/I 2324) versus the concentration of acetone gas in a concentration range of 2–12 ppm.

Fig. 7
Fig. 7

Raman spectra of (a) ammonia (1000 ppm) in air and (b) carbon dioxide in human expiratory gas.

Fig. 8
Fig. 8

Plots of the normalized intensity (a) of the band at 3228 cm-1 versus the concentration of ammonia and (b) of the peak at 1385 cm-1 versus the concentration of carbon dioxide.

Fig. 9
Fig. 9

Raman spectrum of mixed gas consisting of acetone (400 ppm) and ammonia (700 ppm) in air.

Metrics