Abstract

One-step two-wavelength holography is obtained with two interferometric beams with different wavelengths by means of a polarizing modulation produced by a liquid-crystal light valve. This holographic method eliminates the need for preliminary static recording of the hologram and permits one-step two-wavelength holographic testing to produce results easily in real time.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Wyant, “Testing aspherics using two-wavelength holography,” Appl. Opt. 10, 2113–2118 (1971).
    [CrossRef] [PubMed]
  2. J. C. Wyant, B. F. Oreb, P. Hariharan, “Testing aspherics using two-wavelength holography: use of digital electronic techniques,” Appl. Opt. 23, 4020–4023 (1984).
    [CrossRef] [PubMed]
  3. N. Ninane, M. P. Georges, “Holographic interferometry using two-wavelength holography for the measurement of large deformations,” Appl. Opt. 34, 1923–1928 (1995).
    [CrossRef] [PubMed]
  4. J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, “A new real-time non-coherent to coherent light image converter, the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
    [CrossRef]

1995 (1)

1984 (1)

1975 (1)

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, “A new real-time non-coherent to coherent light image converter, the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

1971 (1)

Bleha, W.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, “A new real-time non-coherent to coherent light image converter, the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Boswell, D.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, “A new real-time non-coherent to coherent light image converter, the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Fraas, L.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, “A new real-time non-coherent to coherent light image converter, the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Georges, M. P.

Grinberg, J.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, “A new real-time non-coherent to coherent light image converter, the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Hariharan, P.

Jacobson, A.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, “A new real-time non-coherent to coherent light image converter, the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Miller, L.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, “A new real-time non-coherent to coherent light image converter, the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Myer, G.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, “A new real-time non-coherent to coherent light image converter, the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Ninane, N.

Oreb, B. F.

Wyant, J. C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Principles and configuration of a holographic interferometer based on OSTWH.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F w x ,   y = a w exp j   2 π λ 2   W x ,   y + b w exp j   2 π λ 2   x   sin   θ 2 ,
I w x ,   y = c w + 2 d w cos 2 π λ 2 W x ,   y - x   sin   θ 2 ,
F r x ,   y = a r exp j   2 π λ 1   W x ,   y + b r exp j   2 π λ 1   x   sin   θ 1 ,
F out x ,   y     a r exp - j   2 π λ 1   W x ,   y + b r exp - j   2 π λ 1   x   sin   θ 1 × c w + 2 d w cos 2 π λ 2 W x ,   y - x   sin   θ 2 = a r c w exp - j   2 π λ 1   W x ,   y + b r c w exp - j   2 π λ 1   x   sin   θ 1 + a r d w exp - j 2 π 1 λ 1   -   1 λ 2 W x ,   y   +   1 λ 2   x   sin   θ 2 + b r d w exp - j 2 π × x sin   θ 1 λ 1   -   sin   θ 2 λ 2 + 1 λ 2   W x ,   y + a r d w   exp - j 2 π 1 λ 1 + 1 λ 2 W x ,   y - 1 λ 2   x   sin   θ 2 + b r d w   exp - j 2 π × x sin   θ 1 λ 1 + sin   θ 2 λ - 1 λ 2   W x ,   y .
F D x ,   y = a D exp - j   2 π λ 1   W x ,   y + b D × exp - j 2 π x sin   θ 1 λ 1 - sin   θ 2 λ 2 + 1 λ 2   W x ,   y ,
I D x ,   y = F D x ,   y F D * x ,   y   1 + α   cos   2 π 1 λ 2 - 1 λ 1 W x ,   y - x sin   θ 2 λ 2 - sin   θ 1 λ 1 ,

Metrics