Abstract

Micrometer-scale rigid-body translations are determined from electronic speckle interferometric fringe patterns. An iterative minimum error procedure employs the relative fringe order of picked positions of fringe maxima and minima within a single interferogram to calculate the displacement field directly. The method does not calculate the displacement at a single point but relies on the assumption that the character, but not the magnitudes or directions, of the displacements over the viewing area of the interferogram is known. That is, a model of the displacements exists. On perfect, noise-free forward modeled fringe patterns calculated for an 8.0-μm displacement, the phase error is less than 2 × 10-6 fringe orders (1.3 × 10-5 rad) and probably results only from numerical noise in the inversion. On real fringe patterns obtained in electronic speckle interferometric experiments, mean phase errors are generally less than 5 × 10-5 fringe orders (3.2 × 10-4 rad), suggesting that the technique is robust despite errors resulting from speckle noise, lack of accuracy in positioning of experimental components, and image-distortion corrections.

© 1998 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription