Abstract

We have employed a quadrature detection technique to measure the Doppler signal from a moving target. We mix a circularly polarized reference with a linearly polarized signal to produce an output that contains the real and the imaginary parts of the interference field in the two output polarizations. We are thus able to measure the in-phase and the quadrature components of an interferometric signal simultaneously by splitting the output with a polarizing beam splitter. We present data that demonstrate our ability through this technique to obtain both the amplitude and the frequency of vibration of an audio speaker. We also demonstrate the technique’s ability to give one access to the direction of motion and instantaneous position of the target.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Bilbro, “Atmospheric laser Doppler velocimetry: an overview,” Opt. Eng. 19, 533–542 (1980).
    [CrossRef]
  2. J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
    [CrossRef] [PubMed]
  3. D. V. Stoyanov, B. M. Bratanov, E. V. Stoykova, “Novel wide-band Doppler LIDAR detection technique,” Rev. Sci. Instrum. 66, 2400–2404 (1995).
    [CrossRef]
  4. T. E. McDevitt, G. H. Koopman, C. B. Burroughs, “Two-channel laser vibrometer techniques for vibrational intensity measurements. 1: Flexural intensity,” J. Vib. Acoust. 115, 436–440 (1993).
    [CrossRef]
  5. D. Egan, S. W. James, R. P. Tatam, “A polarization-based optical fibre vibrometer,” Meas. Sci. Technol. 8, 343–347 (1997).
    [CrossRef]
  6. C. A. DiMarzio, C. E. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed laser Doppler measurements of wind shear,” Bull. Am. Meteorol. Soc.1061–1066 (1979).
    [CrossRef]
  7. H. B. Jeffreys, J. W. Bilbro, C. A. DiMarzio, C. M. Sonnenschein, D. W. Toomey, “The remote measurement of tornado-like flows employing a scanning laser Doppler system,” presented at the 17th Conference on Radar Meteorology, American Meteorological Society, Seattle, Wash., October 1976.
  8. C. A. DiMarzio, S. C. Lindberg, “Signal-to-noise equations for heterodyne laser radar,” Appl. Opt. 31, 4240–4246 (1992).
    [CrossRef] [PubMed]
  9. P. A. Roos, M. Stephens, C. E. Wieman, “Laser vibrometer based on optical-feedback-induced frequency modulation of a single-mode laser diode,” Appl. Opt. 35, 6754–6761 (1996).
    [CrossRef] [PubMed]

1997 (1)

D. Egan, S. W. James, R. P. Tatam, “A polarization-based optical fibre vibrometer,” Meas. Sci. Technol. 8, 343–347 (1997).
[CrossRef]

1996 (1)

1995 (1)

D. V. Stoyanov, B. M. Bratanov, E. V. Stoykova, “Novel wide-band Doppler LIDAR detection technique,” Rev. Sci. Instrum. 66, 2400–2404 (1995).
[CrossRef]

1993 (1)

T. E. McDevitt, G. H. Koopman, C. B. Burroughs, “Two-channel laser vibrometer techniques for vibrational intensity measurements. 1: Flexural intensity,” J. Vib. Acoust. 115, 436–440 (1993).
[CrossRef]

1992 (1)

1986 (1)

1980 (1)

J. W. Bilbro, “Atmospheric laser Doppler velocimetry: an overview,” Opt. Eng. 19, 533–542 (1980).
[CrossRef]

1979 (1)

C. A. DiMarzio, C. E. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed laser Doppler measurements of wind shear,” Bull. Am. Meteorol. Soc.1061–1066 (1979).
[CrossRef]

Bilbro, J. W.

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
[CrossRef] [PubMed]

J. W. Bilbro, “Atmospheric laser Doppler velocimetry: an overview,” Opt. Eng. 19, 533–542 (1980).
[CrossRef]

C. A. DiMarzio, C. E. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed laser Doppler measurements of wind shear,” Bull. Am. Meteorol. Soc.1061–1066 (1979).
[CrossRef]

H. B. Jeffreys, J. W. Bilbro, C. A. DiMarzio, C. M. Sonnenschein, D. W. Toomey, “The remote measurement of tornado-like flows employing a scanning laser Doppler system,” presented at the 17th Conference on Radar Meteorology, American Meteorological Society, Seattle, Wash., October 1976.

Bratanov, B. M.

D. V. Stoyanov, B. M. Bratanov, E. V. Stoykova, “Novel wide-band Doppler LIDAR detection technique,” Rev. Sci. Instrum. 66, 2400–2404 (1995).
[CrossRef]

Burnham, D. C.

C. A. DiMarzio, C. E. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed laser Doppler measurements of wind shear,” Bull. Am. Meteorol. Soc.1061–1066 (1979).
[CrossRef]

Burroughs, C. B.

T. E. McDevitt, G. H. Koopman, C. B. Burroughs, “Two-channel laser vibrometer techniques for vibrational intensity measurements. 1: Flexural intensity,” J. Vib. Acoust. 115, 436–440 (1993).
[CrossRef]

DiMarzio, C.

DiMarzio, C. A.

C. A. DiMarzio, S. C. Lindberg, “Signal-to-noise equations for heterodyne laser radar,” Appl. Opt. 31, 4240–4246 (1992).
[CrossRef] [PubMed]

C. A. DiMarzio, C. E. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed laser Doppler measurements of wind shear,” Bull. Am. Meteorol. Soc.1061–1066 (1979).
[CrossRef]

H. B. Jeffreys, J. W. Bilbro, C. A. DiMarzio, C. M. Sonnenschein, D. W. Toomey, “The remote measurement of tornado-like flows employing a scanning laser Doppler system,” presented at the 17th Conference on Radar Meteorology, American Meteorological Society, Seattle, Wash., October 1976.

Egan, D.

D. Egan, S. W. James, R. P. Tatam, “A polarization-based optical fibre vibrometer,” Meas. Sci. Technol. 8, 343–347 (1997).
[CrossRef]

Fitzjarrald, D.

Hallock, J. N.

C. A. DiMarzio, C. E. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed laser Doppler measurements of wind shear,” Bull. Am. Meteorol. Soc.1061–1066 (1979).
[CrossRef]

Harris, C. E.

C. A. DiMarzio, C. E. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed laser Doppler measurements of wind shear,” Bull. Am. Meteorol. Soc.1061–1066 (1979).
[CrossRef]

James, S. W.

D. Egan, S. W. James, R. P. Tatam, “A polarization-based optical fibre vibrometer,” Meas. Sci. Technol. 8, 343–347 (1997).
[CrossRef]

Jeffreys, H. B.

H. B. Jeffreys, J. W. Bilbro, C. A. DiMarzio, C. M. Sonnenschein, D. W. Toomey, “The remote measurement of tornado-like flows employing a scanning laser Doppler system,” presented at the 17th Conference on Radar Meteorology, American Meteorological Society, Seattle, Wash., October 1976.

Johnson, S.

Jones, W.

Koopman, G. H.

T. E. McDevitt, G. H. Koopman, C. B. Burroughs, “Two-channel laser vibrometer techniques for vibrational intensity measurements. 1: Flexural intensity,” J. Vib. Acoust. 115, 436–440 (1993).
[CrossRef]

Lindberg, S. C.

McDevitt, T. E.

T. E. McDevitt, G. H. Koopman, C. B. Burroughs, “Two-channel laser vibrometer techniques for vibrational intensity measurements. 1: Flexural intensity,” J. Vib. Acoust. 115, 436–440 (1993).
[CrossRef]

Roos, P. A.

Sonnenschein, C. M.

H. B. Jeffreys, J. W. Bilbro, C. A. DiMarzio, C. M. Sonnenschein, D. W. Toomey, “The remote measurement of tornado-like flows employing a scanning laser Doppler system,” presented at the 17th Conference on Radar Meteorology, American Meteorological Society, Seattle, Wash., October 1976.

Stephens, M.

Stoyanov, D. V.

D. V. Stoyanov, B. M. Bratanov, E. V. Stoykova, “Novel wide-band Doppler LIDAR detection technique,” Rev. Sci. Instrum. 66, 2400–2404 (1995).
[CrossRef]

Stoykova, E. V.

D. V. Stoyanov, B. M. Bratanov, E. V. Stoykova, “Novel wide-band Doppler LIDAR detection technique,” Rev. Sci. Instrum. 66, 2400–2404 (1995).
[CrossRef]

Tatam, R. P.

D. Egan, S. W. James, R. P. Tatam, “A polarization-based optical fibre vibrometer,” Meas. Sci. Technol. 8, 343–347 (1997).
[CrossRef]

Toomey, D. W.

H. B. Jeffreys, J. W. Bilbro, C. A. DiMarzio, C. M. Sonnenschein, D. W. Toomey, “The remote measurement of tornado-like flows employing a scanning laser Doppler system,” presented at the 17th Conference on Radar Meteorology, American Meteorological Society, Seattle, Wash., October 1976.

Weaver, E. A.

C. A. DiMarzio, C. E. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed laser Doppler measurements of wind shear,” Bull. Am. Meteorol. Soc.1061–1066 (1979).
[CrossRef]

Wieman, C. E.

Appl. Opt. (3)

Bull. Am. Meteorol. Soc. (1)

C. A. DiMarzio, C. E. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed laser Doppler measurements of wind shear,” Bull. Am. Meteorol. Soc.1061–1066 (1979).
[CrossRef]

J. Vib. Acoust. (1)

T. E. McDevitt, G. H. Koopman, C. B. Burroughs, “Two-channel laser vibrometer techniques for vibrational intensity measurements. 1: Flexural intensity,” J. Vib. Acoust. 115, 436–440 (1993).
[CrossRef]

Meas. Sci. Technol. (1)

D. Egan, S. W. James, R. P. Tatam, “A polarization-based optical fibre vibrometer,” Meas. Sci. Technol. 8, 343–347 (1997).
[CrossRef]

Opt. Eng. (1)

J. W. Bilbro, “Atmospheric laser Doppler velocimetry: an overview,” Opt. Eng. 19, 533–542 (1980).
[CrossRef]

Rev. Sci. Instrum. (1)

D. V. Stoyanov, B. M. Bratanov, E. V. Stoykova, “Novel wide-band Doppler LIDAR detection technique,” Rev. Sci. Instrum. 66, 2400–2404 (1995).
[CrossRef]

Other (1)

H. B. Jeffreys, J. W. Bilbro, C. A. DiMarzio, C. M. Sonnenschein, D. W. Toomey, “The remote measurement of tornado-like flows employing a scanning laser Doppler system,” presented at the 17th Conference on Radar Meteorology, American Meteorological Society, Seattle, Wash., October 1976.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The arrows in circles represent the polarization as viewed along the beam direction.

Fig. 2
Fig. 2

(a) Plot of the intensity of one of the outputs of the interferometer shown in Fig. 1. The target is a mirror attached to an audio speaker that oscillates at 150 Hz. (b) A detail of (a) showing the frequency-modulated nature of the signal. The reduction in signal at high frequencies is due to the limited bandwidth of the amplifier used.

Fig. 3
Fig. 3

FFT spectrum of the signal in Fig. 2.

Fig. 4
Fig. 4

(a) Plot of Q versus I, of the two detector signals, in the complex plane. The phasor rotates counter clockwise if the target is moving toward the detector. (b) Unwrapped phase of the phasor in (a). The amplitude is 9.15 wavelengths, or 5.76 μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E sig = A   exp j α exp j ω sig t x ˆ + y ˆ , E ref = B   exp j β exp j ω ref t x ˆ + j y ˆ .
I ¯ = | E sig , x + E ref , x | 2 = A 2 + B 2 + 2 AB × cos ω sig - ω ref t + α - β , Q ¯ = | E sig , y + E ref , y | 2 = A 2 + B 2 + 2 AB × sin ω sig - ω ref t + α - β .
I + jQ = 2 AB   exp j ω sig - ω ref t + α - β .
ν max = 2 π fx max ,

Metrics