Abstract

A one-dimensional 280-nm period silicon grating designed to exhibit polarization-dependent reflection or antireflection behavior at visible wavelengths has been fabricated and tested. For normally incident 575-nm light, this grating reflects less than 3% of the incident radiation polarized perpendicular to the grating grooves and approximately 23% of the orthogonal polarization. To demonstrate the grating’s broadband characteristics, reflectance measurements are presented over the free-space wavelength range 475 nm < λ0 < 800 nm, for angles of incidence in the range 0° < θ < 40°, for polarization parallel and perpendicular to the grating grooves, and for planes of incidence parallel and perpendicular to the grooves. A description of the fabrication process is also given.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
    [CrossRef]
  2. R. C. Enger, S. K. Case, “High-frequency holographic transmission gratings in photoresist,” J. Opt. Soc. Am. 73, 1113–1118 (1983).
    [CrossRef]
  3. R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983).
    [CrossRef] [PubMed]
  4. F. Keilman, “Polarized mirror for optical radiation,” Bundesrepublik Deutchland Patent DE3707984 A1 (22September1988).
  5. L. Cescato, E. Gluch, N. Streibl, “Holographic quarterwave plates,” Appl. Opt. 29, 3286–3290 (1990).
    [CrossRef] [PubMed]
  6. S. Aoyama, T. Yamashita, “Grating beam splitting polarizer using multilayer resist method,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 241–250 (1991).
    [CrossRef]
  7. N. Davidson, A. A. Friesem, E. Hasman, “Computer-generated relief gratings as space-variant polarization elements,” Opt. Lett. 17, 1541–1543 (1992).
    [CrossRef] [PubMed]
  8. E. N. Glytsis, T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31, 4459–4470 (1992).
    [CrossRef] [PubMed]
  9. C. W. Haggans, L. Li, T. Fujita, R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
    [CrossRef]
  10. M. Schmitz, R. Bräuer, O. Bryngdahl, “Gratings in the resonance domain as polarizing beam splitters,” Opt. Lett. 20, 1830–1831 (1995).
    [CrossRef] [PubMed]
  11. M. Schmitz, R. Bräuer, O. Bryngdahl, “Phase gratings with subwavelength structures,” J. Opt. Soc. Am. A 12, 2458–2462 (1995).
    [CrossRef]
  12. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35, 6195–6202 (1996).
    [CrossRef] [PubMed]
  13. R. E. Smith, M. E. Warren, J. R. Wendt, G. A. Vawter, “Polarization-sensitive subwavelength antireflection surfaces on a semiconductor for 975 nm,” Opt. Lett. 21, 1201–1203 (1996).
    [CrossRef] [PubMed]
  14. L. Zhuang, S. Schablitsky, R. C. Shi, S. Y. Chou, “Fabrication and performance of an amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization,” J. Vac. Sci. Technol. B 14, 4055–4057 (1996).
    [CrossRef]
  15. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beamsplitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997).
    [CrossRef]
  16. K. H. Brenner, A. Huang, “Optical implementations of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988).
    [CrossRef] [PubMed]
  17. K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
    [CrossRef] [PubMed]
  18. T. J. Cloonan, A. L. Lentine, “Self-routing crossbar packet switch employing free-space optics for chip-to-chip interconnections,” Appl. Opt. 30, 3721–3733 (1991).
    [CrossRef] [PubMed]
  19. T. J. Cloonan, G. W. Richards, A. L. Lentine, F. B. McCormick, H. S. Hinton, S. J. Hinterlong, “A complexity analysis of smart pixel switching nodes for photonic extended generalized shuffle switching networks,” IEEE J. Quantum Electron. 28, 619–634 (1993).
    [CrossRef]
  20. C. Waterson, B. K. Jenkins, “Passive optical interconnection network employing a shuffle–exchange topology,” Appl. Opt. 33, 1575–1586 (1994).
    [CrossRef] [PubMed]
  21. Y. Hayasaki, I. Tohyama, T. Yatagai, M. Mori, S. Ishihara, “Reversal-input superposing technique for all-optical neural networks,” Appl. Opt. 33, 1477–1484 (1994).
    [CrossRef] [PubMed]
  22. G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749–1762 (1994).
    [CrossRef]
  23. G. A. D. Biase, “Optical multistage interconnection networks for large-scale multiprocessor systems,” Appl. Opt. 27, 2017–2021 (1988).
    [CrossRef] [PubMed]
  24. K. M. Iftekharuddin, M. A. Karim, “Butterfly interconnection network: design of multiplier, flip-flop, and shift register,” Appl. Opt. 33, 1457–1462 (1994).
    [CrossRef] [PubMed]
  25. H. S. Hinton, T. J. Cloonan, F. B. J. McCormick, A. L. Lentine, F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1649 (1994).
    [CrossRef]
  26. J. Tanida, T. Konishi, Y. Ichioka, “P-opals: pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
    [CrossRef]
  27. T. K. Gaylord, E. N. Glytsis, M. G. Moharam, “Zero-reflectivity homogeneous layers and high-spatial frequency surface-relief gratings on lossy materials,” Appl. Opt. 26, 3123–3135 (1987).
    [CrossRef] [PubMed]
  28. D. H. Raguin, G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
    [CrossRef] [PubMed]
  29. C. W. Haggans, L. Li, R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
    [CrossRef]
  30. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695–2706 (1994).
    [CrossRef] [PubMed]
  31. P. Lalanne, D. Lemercier-Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450–458 (1997).
    [CrossRef]
  32. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  33. P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [CrossRef]
  34. A. Bodere, D. Carpentier, A. Accard, B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28, 293–295 (1994).
    [CrossRef]
  35. N. F. Hartman, T. K. Gaylord, “Antireflection gold surface relief gratings: experimental characteristics,” Appl. Opt. 27, 3738–3743 (1988).
    [CrossRef] [PubMed]
  36. T. H. Tanner, M. Fahoum, “A study of the surface parameters of ground and lapped metal surfaces, using specular and diffuse reflection of laser light,” Wear 36, 299–316 (1976).
    [CrossRef]
  37. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, D. F. Edwards, ed. (Academic, Orlando, Fla., 1985), pp. 500–559.
  38. E. H. Anderson, C. M. Horwitz, H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43, 874–875 (1983).
    [CrossRef]
  39. M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
    [CrossRef]

1997

1996

1995

1994

D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695–2706 (1994).
[CrossRef] [PubMed]

A. Bodere, D. Carpentier, A. Accard, B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28, 293–295 (1994).
[CrossRef]

K. M. Iftekharuddin, M. A. Karim, “Butterfly interconnection network: design of multiplier, flip-flop, and shift register,” Appl. Opt. 33, 1457–1462 (1994).
[CrossRef] [PubMed]

H. S. Hinton, T. J. Cloonan, F. B. J. McCormick, A. L. Lentine, F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1649 (1994).
[CrossRef]

J. Tanida, T. Konishi, Y. Ichioka, “P-opals: pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
[CrossRef]

C. Waterson, B. K. Jenkins, “Passive optical interconnection network employing a shuffle–exchange topology,” Appl. Opt. 33, 1575–1586 (1994).
[CrossRef] [PubMed]

Y. Hayasaki, I. Tohyama, T. Yatagai, M. Mori, S. Ishihara, “Reversal-input superposing technique for all-optical neural networks,” Appl. Opt. 33, 1477–1484 (1994).
[CrossRef] [PubMed]

G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749–1762 (1994).
[CrossRef]

1993

C. W. Haggans, L. Li, T. Fujita, R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

T. J. Cloonan, G. W. Richards, A. L. Lentine, F. B. McCormick, H. S. Hinton, S. J. Hinterlong, “A complexity analysis of smart pixel switching nodes for photonic extended generalized shuffle switching networks,” IEEE J. Quantum Electron. 28, 619–634 (1993).
[CrossRef]

D. H. Raguin, G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
[CrossRef] [PubMed]

C. W. Haggans, L. Li, R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
[CrossRef]

1992

1991

T. J. Cloonan, A. L. Lentine, “Self-routing crossbar packet switch employing free-space optics for chip-to-chip interconnections,” Appl. Opt. 30, 3721–3733 (1991).
[CrossRef] [PubMed]

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

1990

1988

1987

1983

E. H. Anderson, C. M. Horwitz, H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43, 874–875 (1983).
[CrossRef]

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

R. C. Enger, S. K. Case, “High-frequency holographic transmission gratings in photoresist,” J. Opt. Soc. Am. 73, 1113–1118 (1983).
[CrossRef]

R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983).
[CrossRef] [PubMed]

1976

T. H. Tanner, M. Fahoum, “A study of the surface parameters of ground and lapped metal surfaces, using specular and diffuse reflection of laser light,” Wear 36, 299–316 (1976).
[CrossRef]

Accard, A.

A. Bodere, D. Carpentier, A. Accard, B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28, 293–295 (1994).
[CrossRef]

Anderson, E. H.

E. H. Anderson, C. M. Horwitz, H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43, 874–875 (1983).
[CrossRef]

Aoyama, S.

S. Aoyama, T. Yamashita, “Grating beam splitting polarizer using multilayer resist method,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 241–250 (1991).
[CrossRef]

Biase, G. A. D.

Bodere, A.

A. Bodere, D. Carpentier, A. Accard, B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28, 293–295 (1994).
[CrossRef]

Bräuer, R.

Brenner, K. H.

Brundrett, D. L.

Bryngdahl, O.

Canizares, C. R.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Carpentier, D.

A. Bodere, D. Carpentier, A. Accard, B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28, 293–295 (1994).
[CrossRef]

Case, S. K.

Cescato, L.

Cheng, C.-C.

Chou, H.-P.

Chou, S. Y.

L. Zhuang, S. Schablitsky, R. C. Shi, S. Y. Chou, “Fabrication and performance of an amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization,” J. Vac. Sci. Technol. B 14, 4055–4057 (1996).
[CrossRef]

Cloonan, T. J.

H. S. Hinton, T. J. Cloonan, F. B. J. McCormick, A. L. Lentine, F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1649 (1994).
[CrossRef]

T. J. Cloonan, G. W. Richards, A. L. Lentine, F. B. McCormick, H. S. Hinton, S. J. Hinterlong, “A complexity analysis of smart pixel switching nodes for photonic extended generalized shuffle switching networks,” IEEE J. Quantum Electron. 28, 619–634 (1993).
[CrossRef]

T. J. Cloonan, A. L. Lentine, “Self-routing crossbar packet switch employing free-space optics for chip-to-chip interconnections,” Appl. Opt. 30, 3721–3733 (1991).
[CrossRef] [PubMed]

Davidson, N.

Dewey, D.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Edwards, D. F.

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, D. F. Edwards, ed. (Academic, Orlando, Fla., 1985), pp. 500–559.

Enger, R. C.

Esener, S. C.

G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749–1762 (1994).
[CrossRef]

Fahoum, M.

T. H. Tanner, M. Fahoum, “A study of the surface parameters of ground and lapped metal surfaces, using specular and diffuse reflection of laser light,” Wear 36, 299–316 (1976).
[CrossRef]

Fainman, Y.

Fernier, B.

A. Bodere, D. Carpentier, A. Accard, B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28, 293–295 (1994).
[CrossRef]

Flanagan, K. A.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Flanders, D. C.

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

Friesem, A. A.

Fujita, T.

C. W. Haggans, L. Li, T. Fujita, R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

Gaylord, T. K.

Gluch, E.

Glytsis, E. N.

Grann, E. B.

Haggans, C. W.

C. W. Haggans, L. Li, R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
[CrossRef]

C. W. Haggans, L. Li, T. Fujita, R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

Hamnett, M. A.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Hartman, N. F.

Hasman, E.

Hayasaki, Y.

Hinterlong, S. J.

T. J. Cloonan, G. W. Richards, A. L. Lentine, F. B. McCormick, H. S. Hinton, S. J. Hinterlong, “A complexity analysis of smart pixel switching nodes for photonic extended generalized shuffle switching networks,” IEEE J. Quantum Electron. 28, 619–634 (1993).
[CrossRef]

Hinton, H. S.

H. S. Hinton, T. J. Cloonan, F. B. J. McCormick, A. L. Lentine, F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1649 (1994).
[CrossRef]

T. J. Cloonan, G. W. Richards, A. L. Lentine, F. B. McCormick, H. S. Hinton, S. J. Hinterlong, “A complexity analysis of smart pixel switching nodes for photonic extended generalized shuffle switching networks,” IEEE J. Quantum Electron. 28, 619–634 (1993).
[CrossRef]

Horwitz, C. M.

E. H. Anderson, C. M. Horwitz, H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43, 874–875 (1983).
[CrossRef]

Huang, A.

Ichioka, Y.

J. Tanida, T. Konishi, Y. Ichioka, “P-opals: pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
[CrossRef]

Iftekharuddin, K. M.

Ishihara, S.

Jenkins, B. K.

Johnson, K. M.

Karim, M. A.

Keilman, F.

F. Keilman, “Polarized mirror for optical radiation,” Bundesrepublik Deutchland Patent DE3707984 A1 (22September1988).

Konishi, T.

J. Tanida, T. Konishi, Y. Ichioka, “P-opals: pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
[CrossRef]

Kostuk, R. K.

C. W. Haggans, L. Li, R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
[CrossRef]

C. W. Haggans, L. Li, T. Fujita, R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

Krishnamoorthy, A. V.

G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749–1762 (1994).
[CrossRef]

Lalanne, P.

Lemercier-Lalanne, D.

Lentine, A. L.

H. S. Hinton, T. J. Cloonan, F. B. J. McCormick, A. L. Lentine, F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1649 (1994).
[CrossRef]

T. J. Cloonan, G. W. Richards, A. L. Lentine, F. B. McCormick, H. S. Hinton, S. J. Hinterlong, “A complexity analysis of smart pixel switching nodes for photonic extended generalized shuffle switching networks,” IEEE J. Quantum Electron. 28, 619–634 (1993).
[CrossRef]

T. J. Cloonan, A. L. Lentine, “Self-routing crossbar packet switch employing free-space optics for chip-to-chip interconnections,” Appl. Opt. 30, 3721–3733 (1991).
[CrossRef] [PubMed]

Levine, A. M.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Li, L.

C. W. Haggans, L. Li, R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
[CrossRef]

C. W. Haggans, L. Li, T. Fujita, R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

Lum, K. S. K.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Manikkalingam, R.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Markert, T. H.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Marsden, G. C.

G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749–1762 (1994).
[CrossRef]

McCormick, F. B.

T. J. Cloonan, G. W. Richards, A. L. Lentine, F. B. McCormick, H. S. Hinton, S. J. Hinterlong, “A complexity analysis of smart pixel switching nodes for photonic extended generalized shuffle switching networks,” IEEE J. Quantum Electron. 28, 619–634 (1993).
[CrossRef]

McCormick, F. B. J.

H. S. Hinton, T. J. Cloonan, F. B. J. McCormick, A. L. Lentine, F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1649 (1994).
[CrossRef]

Moharam, M. G.

Mori, M.

Morris, G. M.

Pommet, D. A.

Raguin, D. H.

Richards, G. W.

T. J. Cloonan, G. W. Richards, A. L. Lentine, F. B. McCormick, H. S. Hinton, S. J. Hinterlong, “A complexity analysis of smart pixel switching nodes for photonic extended generalized shuffle switching networks,” IEEE J. Quantum Electron. 28, 619–634 (1993).
[CrossRef]

Salvekar, A. A.

Schablitsky, S.

L. Zhuang, S. Schablitsky, R. C. Shi, S. Y. Chou, “Fabrication and performance of an amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization,” J. Vac. Sci. Technol. B 14, 4055–4057 (1996).
[CrossRef]

Schattenburg, M. L.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Scherer, A.

Schmitz, M.

Shamir, J.

Shi, R. C.

L. Zhuang, S. Schablitsky, R. C. Shi, S. Y. Chou, “Fabrication and performance of an amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization,” J. Vac. Sci. Technol. B 14, 4055–4057 (1996).
[CrossRef]

Smith, H. I.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

E. H. Anderson, C. M. Horwitz, H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43, 874–875 (1983).
[CrossRef]

Smith, R. E.

Streibl, N.

Sun, P.-C.

Surette, M. R.

Tanida, J.

J. Tanida, T. Konishi, Y. Ichioka, “P-opals: pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
[CrossRef]

Tanner, T. H.

T. H. Tanner, M. Fahoum, “A study of the surface parameters of ground and lapped metal surfaces, using specular and diffuse reflection of laser light,” Wear 36, 299–316 (1976).
[CrossRef]

Tohyama, I.

Tooley, F. A. P.

H. S. Hinton, T. J. Cloonan, F. B. J. McCormick, A. L. Lentine, F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1649 (1994).
[CrossRef]

Tyan, R.-C.

Vawter, G. A.

Warren, M. E.

Waterson, C.

Wendt, J. R.

Xu, F.

Yamashita, T.

S. Aoyama, T. Yamashita, “Grating beam splitting polarizer using multilayer resist method,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 241–250 (1991).
[CrossRef]

Yatagai, T.

Yayla, G.

G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749–1762 (1994).
[CrossRef]

Zhuang, L.

L. Zhuang, S. Schablitsky, R. C. Shi, S. Y. Chou, “Fabrication and performance of an amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization,” J. Vac. Sci. Technol. B 14, 4055–4057 (1996).
[CrossRef]

Appl. Opt.

R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983).
[CrossRef] [PubMed]

L. Cescato, E. Gluch, N. Streibl, “Holographic quarterwave plates,” Appl. Opt. 29, 3286–3290 (1990).
[CrossRef] [PubMed]

E. N. Glytsis, T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31, 4459–4470 (1992).
[CrossRef] [PubMed]

D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35, 6195–6202 (1996).
[CrossRef] [PubMed]

K. H. Brenner, A. Huang, “Optical implementations of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988).
[CrossRef] [PubMed]

K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
[CrossRef] [PubMed]

T. J. Cloonan, A. L. Lentine, “Self-routing crossbar packet switch employing free-space optics for chip-to-chip interconnections,” Appl. Opt. 30, 3721–3733 (1991).
[CrossRef] [PubMed]

C. Waterson, B. K. Jenkins, “Passive optical interconnection network employing a shuffle–exchange topology,” Appl. Opt. 33, 1575–1586 (1994).
[CrossRef] [PubMed]

Y. Hayasaki, I. Tohyama, T. Yatagai, M. Mori, S. Ishihara, “Reversal-input superposing technique for all-optical neural networks,” Appl. Opt. 33, 1477–1484 (1994).
[CrossRef] [PubMed]

G. A. D. Biase, “Optical multistage interconnection networks for large-scale multiprocessor systems,” Appl. Opt. 27, 2017–2021 (1988).
[CrossRef] [PubMed]

K. M. Iftekharuddin, M. A. Karim, “Butterfly interconnection network: design of multiplier, flip-flop, and shift register,” Appl. Opt. 33, 1457–1462 (1994).
[CrossRef] [PubMed]

D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695–2706 (1994).
[CrossRef] [PubMed]

T. K. Gaylord, E. N. Glytsis, M. G. Moharam, “Zero-reflectivity homogeneous layers and high-spatial frequency surface-relief gratings on lossy materials,” Appl. Opt. 26, 3123–3135 (1987).
[CrossRef] [PubMed]

D. H. Raguin, G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
[CrossRef] [PubMed]

N. F. Hartman, T. K. Gaylord, “Antireflection gold surface relief gratings: experimental characteristics,” Appl. Opt. 27, 3738–3743 (1988).
[CrossRef] [PubMed]

Appl. Phys. Lett.

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

E. H. Anderson, C. M. Horwitz, H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43, 874–875 (1983).
[CrossRef]

IEEE J. Quantum Electron.

T. J. Cloonan, G. W. Richards, A. L. Lentine, F. B. McCormick, H. S. Hinton, S. J. Hinterlong, “A complexity analysis of smart pixel switching nodes for photonic extended generalized shuffle switching networks,” IEEE J. Quantum Electron. 28, 619–634 (1993).
[CrossRef]

J. Mod. Opt.

C. W. Haggans, L. Li, T. Fujita, R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

L. Zhuang, S. Schablitsky, R. C. Shi, S. Y. Chou, “Fabrication and performance of an amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization,” J. Vac. Sci. Technol. B 14, 4055–4057 (1996).
[CrossRef]

Mater. Sci. Eng. B

A. Bodere, D. Carpentier, A. Accard, B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28, 293–295 (1994).
[CrossRef]

Opt. Eng.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Opt. Lett.

Proc. IEEE

G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749–1762 (1994).
[CrossRef]

H. S. Hinton, T. J. Cloonan, F. B. J. McCormick, A. L. Lentine, F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1649 (1994).
[CrossRef]

J. Tanida, T. Konishi, Y. Ichioka, “P-opals: pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
[CrossRef]

Wear

T. H. Tanner, M. Fahoum, “A study of the surface parameters of ground and lapped metal surfaces, using specular and diffuse reflection of laser light,” Wear 36, 299–316 (1976).
[CrossRef]

Other

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, D. F. Edwards, ed. (Academic, Orlando, Fla., 1985), pp. 500–559.

S. Aoyama, T. Yamashita, “Grating beam splitting polarizer using multilayer resist method,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 241–250 (1991).
[CrossRef]

F. Keilman, “Polarized mirror for optical radiation,” Bundesrepublik Deutchland Patent DE3707984 A1 (22September1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Binary grating geometry showing grating vector K; period, Λ; filling factor, F; and groove depth, d.

Fig. 2
Fig. 2

Calculated reflectance as a function of filling factor and groove depth for silicon binary gratings with periods of Λ = 280 nm, normally illuminated with light of wavelength λ0 = 600 nm. (a) Polarization along the grating grooves (EK). (b) Polarization perpendicular to the grooves (HK). For both plots, the outermost dashed contour is for a reflectance of 30%, whereas the central group of contour lines have values in steps of 2% that range from 10% on the outer contour to 2% on the inner contour. Reflectance zeros occur at (a) (d = 90 nm; F = 0.08) and (b) (d = 100 nm; F = 0.32) and (d = 110 nm; F = 0.68).

Fig. 3
Fig. 3

Fabrication process steps used to produce 280-nm period gratings in silicon.

Fig. 4
Fig. 4

Interferometric grating recording configuration. Fixed mirrors FM and gimballed mirrors GM are used to direct a beam of free-space wavelength λ0 = 363.8 nm through the beam splitter BS to the recording plane (a third mirror mounted on piezoelectric transducer PZT is used to compensate actively for slow drifts in the grating pattern during long exposures). Before the beams impinge on the sample, they are focused and smoothed by spatial filters SF to form approximately spherical waves, which expand to quasi-plane waves and arrive at the recording plane from angles of incidence ±θ. The period of the grating recorded in this manner is Λ = λ0/2 sin θ.

Fig. 5
Fig. 5

Isotropic O2 plasma trimming of developed photoresist grating (after Fig. 5 of Ref. 34). Small etch times are used to remove residual photoresist from the grooves, but further etching reduces both the width and the height of the remaining photoresist ridges, allowing control of the photoresist filling factors and hence of the filling factors of the chromium mask and the final silicon grating.

Fig. 6
Fig. 6

Electron micrograph of the fabricated silicon grating.

Fig. 7
Fig. 7

Measurement configuration used for the acquisition of grating reflectance. Light from the monochromator is polarized perpendicular to the table by Glan–Thompson polarizer P and collimated with lens L1. Iris diaphragm ID limits the diameter of the beam illuminating the sample mount SM. The collimated beam is split with a cube beam splitter BS, directing reference beam I1 to a detector D1. The remaining signal beam I2 is reflected by the sample and returned to a second detector D2 by reflection from mirror M and beam splitter BS. Lens L2 prevents the signal beam from scanning off the active area of D2. Reference and signal currents from D1 and D2 were converted to voltages by United Detectors Model 350 radiometers RM1 and RM2 and were amplified by variable gain amplifiers G1 and G2. The amplified voltages V1 and V2 are sensed by an Ontrak Control Systems Model ADR112 12-bit analog-to-digital A/D converter.

Fig. 8
Fig. 8

Grating reflectance measurements with the plane of incidence perpendicular to the grating grooves for HK (TM) polarization. Tick marks indicate calculated Rayleigh wavelengths for the i = ±2 diffracted orders in the substrate.

Fig. 9
Fig. 9

Same as for Fig. 8 but for EK (TE) polarization.

Fig. 10
Fig. 10

Grating reflectance measurements in the plane of incidence parallel to the grating grooves for HK (TE) polarization. In this plane the Rayleigh wavelengths for the i = ±2 substrate orders are the same for all angles of incidence.

Fig. 11
Fig. 11

Same as for Fig. 10 but for EK (TM) polarization.

Fig. 12
Fig. 12

Normal-incidence reflectance as a function of wavelength, calculated for a polished silicon wafer and for the designed binary grating and measured from the fabricated grating.

Fig. 13
Fig. 13

Normal-incidence reflectance as a function of wavelength, calculated for a six-layer quantized estimate of the grating shape from Fig. 6 and measured from the fabricated grating.

Fig. 14
Fig. 14

Normal-incidence reflectance as a function of wavelength, calculated for a six-layer least-squares fit to the data and measured from the fabricated grating.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Λ min λ 0 , min n c sin   θ max + n c .
λ i R = Λ i sin   θ ± Re n s λ 0 ,     i = ± 1 ,   ± 2 ,   ± 3 ,
λ i R = Λ | i | Re n s λ 0 2 - sin 2   θ 1 / 2 ,   i = ± 1 ,   ± 2 ,   ± 3 .

Metrics