Abstract

We report fabrication techniques of a-Si:H/SiOx:H multilayers having ample thickness and flat layer boundaries for high performance laminated polarization splitters (LPS’s). In the new fabrication process we used the following techniques to achieve low stress and high surface flatness: SiOx:H film deposition by rf sputtering with a mixture of Ar/H2, two-step deposition using rf bias sputtering, and elimination of surface roughness and defects by mechanical polishing. This process enabled deposition of a multilayer as thick as 265 μm while preserving layer boundaries as flat as 1 nm (rms). As a result, LPS’s having low loss, a large aperture, and a long splitting distance were successfully obtained. The high optical performance is applicable to functional devices integrated into fibers or planar waveguides.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shiraishi, S. Kawakami, “Spatial walk-off polarizer utilizing artificial anisotropic dielectrics,” Opt. Lett. 15, 516–518 (1990).
    [CrossRef] [PubMed]
  2. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), pp. 705–708.
  3. S. Kawakami, “In-line fiber components: a new way to integrate functional devices,” presented at the Ninth Optical Fiber Sensors Conference, Firenze, Italy, May 1993.
  4. T. Sato, T. Sasaki, K. Tsuchida, K. Shiraishi, S. Kawakami, “Scattering mechanism and reducing insertion loss in a laminated polarization splitter,” Appl. Opt. 33, 6925–6934 (1994).
    [CrossRef] [PubMed]
  5. T. Sato, T. Sasaki, K. Shiraishi, S. Kawakami, “Design and fabrication of laminated polarization splitters for a fiber-integrated isolator,” in Tenth International Conference on Integrated Optics and Optical Fiber Communication, Vol. 1 of Technical Digest (Chinese U. Press, Hong Kong, 1995), pp. 73–74, paper TuD2-1.
  6. O. Hanaizumi, Y. Lee, I. Takahashi, T. Nakajo, J. Murota, S. Kawakami, “a-SiC:H/SiO2 laminated polarization splitter for the wavelength region longer than 1.3 μm prepared by plasma-enhanced chemical vapor deposition,” Optical Fiber Technol. 1, 359–362 (1995).
    [CrossRef]
  7. T. Serikawa, T. Yachi, “Magnetron-sputtered SiO2 films in hydrogen-argon mixtures,” Solid State Technol. 131, 2105–2109 (1984).
  8. H. Takahashi, H. Nagata, H. Kataoka, “Formation of stress reduced silicon oxide films by Ar/H2 sputtering method,” J. Appl. Phys. 75, 2667–2672 (1994).
    [CrossRef]
  9. J. M. Bennett, “Scattering and surface evaluation techniques for the optics of the future,” Opt. News 11, 17–27 (1985).
    [CrossRef]

1995

O. Hanaizumi, Y. Lee, I. Takahashi, T. Nakajo, J. Murota, S. Kawakami, “a-SiC:H/SiO2 laminated polarization splitter for the wavelength region longer than 1.3 μm prepared by plasma-enhanced chemical vapor deposition,” Optical Fiber Technol. 1, 359–362 (1995).
[CrossRef]

1994

H. Takahashi, H. Nagata, H. Kataoka, “Formation of stress reduced silicon oxide films by Ar/H2 sputtering method,” J. Appl. Phys. 75, 2667–2672 (1994).
[CrossRef]

T. Sato, T. Sasaki, K. Tsuchida, K. Shiraishi, S. Kawakami, “Scattering mechanism and reducing insertion loss in a laminated polarization splitter,” Appl. Opt. 33, 6925–6934 (1994).
[CrossRef] [PubMed]

1990

1985

J. M. Bennett, “Scattering and surface evaluation techniques for the optics of the future,” Opt. News 11, 17–27 (1985).
[CrossRef]

1984

T. Serikawa, T. Yachi, “Magnetron-sputtered SiO2 films in hydrogen-argon mixtures,” Solid State Technol. 131, 2105–2109 (1984).

Bennett, J. M.

J. M. Bennett, “Scattering and surface evaluation techniques for the optics of the future,” Opt. News 11, 17–27 (1985).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), pp. 705–708.

Hanaizumi, O.

O. Hanaizumi, Y. Lee, I. Takahashi, T. Nakajo, J. Murota, S. Kawakami, “a-SiC:H/SiO2 laminated polarization splitter for the wavelength region longer than 1.3 μm prepared by plasma-enhanced chemical vapor deposition,” Optical Fiber Technol. 1, 359–362 (1995).
[CrossRef]

Kataoka, H.

H. Takahashi, H. Nagata, H. Kataoka, “Formation of stress reduced silicon oxide films by Ar/H2 sputtering method,” J. Appl. Phys. 75, 2667–2672 (1994).
[CrossRef]

Kawakami, S.

O. Hanaizumi, Y. Lee, I. Takahashi, T. Nakajo, J. Murota, S. Kawakami, “a-SiC:H/SiO2 laminated polarization splitter for the wavelength region longer than 1.3 μm prepared by plasma-enhanced chemical vapor deposition,” Optical Fiber Technol. 1, 359–362 (1995).
[CrossRef]

T. Sato, T. Sasaki, K. Tsuchida, K. Shiraishi, S. Kawakami, “Scattering mechanism and reducing insertion loss in a laminated polarization splitter,” Appl. Opt. 33, 6925–6934 (1994).
[CrossRef] [PubMed]

K. Shiraishi, S. Kawakami, “Spatial walk-off polarizer utilizing artificial anisotropic dielectrics,” Opt. Lett. 15, 516–518 (1990).
[CrossRef] [PubMed]

T. Sato, T. Sasaki, K. Shiraishi, S. Kawakami, “Design and fabrication of laminated polarization splitters for a fiber-integrated isolator,” in Tenth International Conference on Integrated Optics and Optical Fiber Communication, Vol. 1 of Technical Digest (Chinese U. Press, Hong Kong, 1995), pp. 73–74, paper TuD2-1.

S. Kawakami, “In-line fiber components: a new way to integrate functional devices,” presented at the Ninth Optical Fiber Sensors Conference, Firenze, Italy, May 1993.

Lee, Y.

O. Hanaizumi, Y. Lee, I. Takahashi, T. Nakajo, J. Murota, S. Kawakami, “a-SiC:H/SiO2 laminated polarization splitter for the wavelength region longer than 1.3 μm prepared by plasma-enhanced chemical vapor deposition,” Optical Fiber Technol. 1, 359–362 (1995).
[CrossRef]

Murota, J.

O. Hanaizumi, Y. Lee, I. Takahashi, T. Nakajo, J. Murota, S. Kawakami, “a-SiC:H/SiO2 laminated polarization splitter for the wavelength region longer than 1.3 μm prepared by plasma-enhanced chemical vapor deposition,” Optical Fiber Technol. 1, 359–362 (1995).
[CrossRef]

Nagata, H.

H. Takahashi, H. Nagata, H. Kataoka, “Formation of stress reduced silicon oxide films by Ar/H2 sputtering method,” J. Appl. Phys. 75, 2667–2672 (1994).
[CrossRef]

Nakajo, T.

O. Hanaizumi, Y. Lee, I. Takahashi, T. Nakajo, J. Murota, S. Kawakami, “a-SiC:H/SiO2 laminated polarization splitter for the wavelength region longer than 1.3 μm prepared by plasma-enhanced chemical vapor deposition,” Optical Fiber Technol. 1, 359–362 (1995).
[CrossRef]

Sasaki, T.

T. Sato, T. Sasaki, K. Tsuchida, K. Shiraishi, S. Kawakami, “Scattering mechanism and reducing insertion loss in a laminated polarization splitter,” Appl. Opt. 33, 6925–6934 (1994).
[CrossRef] [PubMed]

T. Sato, T. Sasaki, K. Shiraishi, S. Kawakami, “Design and fabrication of laminated polarization splitters for a fiber-integrated isolator,” in Tenth International Conference on Integrated Optics and Optical Fiber Communication, Vol. 1 of Technical Digest (Chinese U. Press, Hong Kong, 1995), pp. 73–74, paper TuD2-1.

Sato, T.

T. Sato, T. Sasaki, K. Tsuchida, K. Shiraishi, S. Kawakami, “Scattering mechanism and reducing insertion loss in a laminated polarization splitter,” Appl. Opt. 33, 6925–6934 (1994).
[CrossRef] [PubMed]

T. Sato, T. Sasaki, K. Shiraishi, S. Kawakami, “Design and fabrication of laminated polarization splitters for a fiber-integrated isolator,” in Tenth International Conference on Integrated Optics and Optical Fiber Communication, Vol. 1 of Technical Digest (Chinese U. Press, Hong Kong, 1995), pp. 73–74, paper TuD2-1.

Serikawa, T.

T. Serikawa, T. Yachi, “Magnetron-sputtered SiO2 films in hydrogen-argon mixtures,” Solid State Technol. 131, 2105–2109 (1984).

Shiraishi, K.

T. Sato, T. Sasaki, K. Tsuchida, K. Shiraishi, S. Kawakami, “Scattering mechanism and reducing insertion loss in a laminated polarization splitter,” Appl. Opt. 33, 6925–6934 (1994).
[CrossRef] [PubMed]

K. Shiraishi, S. Kawakami, “Spatial walk-off polarizer utilizing artificial anisotropic dielectrics,” Opt. Lett. 15, 516–518 (1990).
[CrossRef] [PubMed]

T. Sato, T. Sasaki, K. Shiraishi, S. Kawakami, “Design and fabrication of laminated polarization splitters for a fiber-integrated isolator,” in Tenth International Conference on Integrated Optics and Optical Fiber Communication, Vol. 1 of Technical Digest (Chinese U. Press, Hong Kong, 1995), pp. 73–74, paper TuD2-1.

Takahashi, H.

H. Takahashi, H. Nagata, H. Kataoka, “Formation of stress reduced silicon oxide films by Ar/H2 sputtering method,” J. Appl. Phys. 75, 2667–2672 (1994).
[CrossRef]

Takahashi, I.

O. Hanaizumi, Y. Lee, I. Takahashi, T. Nakajo, J. Murota, S. Kawakami, “a-SiC:H/SiO2 laminated polarization splitter for the wavelength region longer than 1.3 μm prepared by plasma-enhanced chemical vapor deposition,” Optical Fiber Technol. 1, 359–362 (1995).
[CrossRef]

Tsuchida, K.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), pp. 705–708.

Yachi, T.

T. Serikawa, T. Yachi, “Magnetron-sputtered SiO2 films in hydrogen-argon mixtures,” Solid State Technol. 131, 2105–2109 (1984).

Appl. Opt.

J. Appl. Phys.

H. Takahashi, H. Nagata, H. Kataoka, “Formation of stress reduced silicon oxide films by Ar/H2 sputtering method,” J. Appl. Phys. 75, 2667–2672 (1994).
[CrossRef]

Opt. Lett.

Opt. News

J. M. Bennett, “Scattering and surface evaluation techniques for the optics of the future,” Opt. News 11, 17–27 (1985).
[CrossRef]

Optical Fiber Technol.

O. Hanaizumi, Y. Lee, I. Takahashi, T. Nakajo, J. Murota, S. Kawakami, “a-SiC:H/SiO2 laminated polarization splitter for the wavelength region longer than 1.3 μm prepared by plasma-enhanced chemical vapor deposition,” Optical Fiber Technol. 1, 359–362 (1995).
[CrossRef]

Solid State Technol.

T. Serikawa, T. Yachi, “Magnetron-sputtered SiO2 films in hydrogen-argon mixtures,” Solid State Technol. 131, 2105–2109 (1984).

Other

T. Sato, T. Sasaki, K. Shiraishi, S. Kawakami, “Design and fabrication of laminated polarization splitters for a fiber-integrated isolator,” in Tenth International Conference on Integrated Optics and Optical Fiber Communication, Vol. 1 of Technical Digest (Chinese U. Press, Hong Kong, 1995), pp. 73–74, paper TuD2-1.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), pp. 705–708.

S. Kawakami, “In-line fiber components: a new way to integrate functional devices,” presented at the Ninth Optical Fiber Sensors Conference, Firenze, Italy, May 1993.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of a LPS.

Fig. 2
Fig. 2

Relationship between aperture and splitting distance of a LPS for various multilayer thicknesses t. The aperture decreases and the splitting distance increases when sample thickness L increases. The circles indicate the measurement results.

Fig. 3
Fig. 3

Dependence of surface roughness and film stress of SiO x :H films on the H2 flow ratio.

Fig. 4
Fig. 4

(a) Structure of the multilayer and (b) dependence on x of surface roughness and film stress of the multilayer with 2-μm thickness deposited at the bias rf power of 40 W.

Fig. 5
Fig. 5

Cross-sectional scanning electron microscope photograph of the multilayer in the vicinity of the polished layer. A defect was removed by the polishing process.

Fig. 6
Fig. 6

Calculated reflectance in the multilayer structure containing one SiO x :H layer that is thicker than others.

Fig. 7
Fig. 7

Evaluation of macroscopic roughness by use of scattered light.

Fig. 8
Fig. 8

Frequency and accumulated frequency of the scattering ratio for each 0.1% increment.

Fig. 9
Fig. 9

Output power distributions for a LPS with a 144-μm-thick multilayer.

Tables (2)

Tables Icon

Table 1 Thickness and Top Surface Roughness of the Fabricated Multilayers

Tables Icon

Table 2 Optical Properties of Laminated Polarization Splitters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R s / R r = exp 4 k 2 n 2 σ 2 - 1 ,

Metrics