Abstract

Direct bonding without the use of adhesive materials was demonstrated on a titanium-doped sapphire laser crystal with a bonding surface dimension of 12 mm × 6 mm2. The bonding surfaces were treated with chemical processes to clean up and to create a hydrophilic (-OH) thin layer for hydrogen bonding. Two different processes of heat treatment performed in succession transformed the hydrogen bonding into direct bonding. The performance of the bonded crystal was tested by laser oscillation with the second harmonics of a Q-switched Nd:YAG laser at a 20-Hz repetition rate. In comparison with a normal laser crystal, there were no differences in output power or spatial profile in an input pumping condition of 30 mJ.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Meissner, Technical Application Note (Onyx Optics, Inc., 6551 Sierra Lane, Dublin, Calif. 94568, 1995).
  2. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
    [CrossRef]
  3. D. W. Mordaunt, TRW, RI1196, One Space Park, Redondo Beach, Calif. 90278 (personal communication, 1996).
  4. M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon–silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
    [CrossRef]
  5. K. Furukawa, “Silicon wafer direct-bonding technique,” J. Jpn. Weld. Soc. 59, 105–109 (1990), in Japanese.
    [CrossRef]
  6. P. Singer, “Wafer cleaning: making the transition to surface engineering,” Semicond. Int. 18, 88–92 (1995).
  7. T. Suga, “Low temperature bonding by means of the surface activated bonding,” Mater. Jpn. 35, 496–500 (1996), in Japanese.
    [CrossRef]
  8. T. Furukawa, “Japan develops ceramic-metal bonding technique,” Am. Met. Mark. 100, (136), 4 (1992).

1997 (1)

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

1996 (1)

T. Suga, “Low temperature bonding by means of the surface activated bonding,” Mater. Jpn. 35, 496–500 (1996), in Japanese.
[CrossRef]

1995 (1)

P. Singer, “Wafer cleaning: making the transition to surface engineering,” Semicond. Int. 18, 88–92 (1995).

1992 (1)

T. Furukawa, “Japan develops ceramic-metal bonding technique,” Am. Met. Mark. 100, (136), 4 (1992).

1990 (1)

K. Furukawa, “Silicon wafer direct-bonding technique,” J. Jpn. Weld. Soc. 59, 105–109 (1990), in Japanese.
[CrossRef]

1986 (1)

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon–silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Beach, R. J.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Emanuel, M. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Fukuda, K.

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon–silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Furukawa, K.

K. Furukawa, “Silicon wafer direct-bonding technique,” J. Jpn. Weld. Soc. 59, 105–109 (1990), in Japanese.
[CrossRef]

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon–silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Furukawa, T.

T. Furukawa, “Japan develops ceramic-metal bonding technique,” Am. Met. Mark. 100, (136), 4 (1992).

Honea, E. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Meissner, H. E.

H. E. Meissner, Technical Application Note (Onyx Optics, Inc., 6551 Sierra Lane, Dublin, Calif. 94568, 1995).

Mitchell, S. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Mordaunt, D. W.

D. W. Mordaunt, TRW, RI1196, One Space Park, Redondo Beach, Calif. 90278 (personal communication, 1996).

Payne, S. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Shimbo, M.

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon–silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Singer, P.

P. Singer, “Wafer cleaning: making the transition to surface engineering,” Semicond. Int. 18, 88–92 (1995).

Skidmore, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Speth, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Suga, T.

T. Suga, “Low temperature bonding by means of the surface activated bonding,” Mater. Jpn. 35, 496–500 (1996), in Japanese.
[CrossRef]

Sutton, S. B.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Tanzawa, K.

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon–silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Am. Met. Mark. (1)

T. Furukawa, “Japan develops ceramic-metal bonding technique,” Am. Met. Mark. 100, (136), 4 (1992).

IEEE J. Quantum Electron. (1)

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

J. Appl. Phys. (1)

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon–silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

J. Jpn. Weld. Soc. (1)

K. Furukawa, “Silicon wafer direct-bonding technique,” J. Jpn. Weld. Soc. 59, 105–109 (1990), in Japanese.
[CrossRef]

Mater. Jpn. (1)

T. Suga, “Low temperature bonding by means of the surface activated bonding,” Mater. Jpn. 35, 496–500 (1996), in Japanese.
[CrossRef]

Semicond. Int. (1)

P. Singer, “Wafer cleaning: making the transition to surface engineering,” Semicond. Int. 18, 88–92 (1995).

Other (2)

D. W. Mordaunt, TRW, RI1196, One Space Park, Redondo Beach, Calif. 90278 (personal communication, 1996).

H. E. Meissner, Technical Application Note (Onyx Optics, Inc., 6551 Sierra Lane, Dublin, Calif. 94568, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Procedure for chemical treatments to clean and form an (-OH) layer on bonding surfaces.

Fig. 2
Fig. 2

(a) Pressure variation of the inside furnace during the second heat treatment. For this measurement, the graphite vice was preheated under vacuum. (b) Results of partial pressure measurements by the quadrupole mass filter (ULVAC, MSQ-150A). Each number means the mass number of signals.

Fig. 3
Fig. 3

Results of the impact test of the bonded crystal; arrows indicate the bonding faces, and a smaller fragment was part of the right shoulder of the bonded crystal before the test. From this photo, it can be seen that the direct bonding face did not separate the center part of the crystals.

Fig. 4
Fig. 4

Direct-bonded Ti:sapphire crystal; arrow indicates direction of the He–Ne laser beam. Center line shows the location of bonding face.

Fig. 5
Fig. 5

Schematic of the experimental setup of the direct-bonded Ti:sapphire laser crystal. Second harmonics of a Q-switched Nd:YAG laser (Coherent, Infinity 40-100) was used as the pumping source of the oscillator. TR, total reflector; WB, wave plate; HM, half-mirror; BD, beam dump; SL, spherical lens of 50-cm focal length; DG, diffraction grating with 1800 grooves/mm; CRY, Ti:sapphire crystal with Brewster ends. The effective cavity length was approximately 65 mm.

Fig. 6
Fig. 6

Spatial profile of the direct-bonded Ti:sapphire laser. The profile was measured by a CCD camera at a distance of 3 m from the Ti:sapphire laser oscillator.

Metrics