Abstract

We demonstrate that two cross-polarized longitudinal modes can have 50% higher conversion efficiency than two parallel-polarized longitudinal modes in a diode-laser-pumped and intracavity frequency-doubled Nd:YVO4 laser when operated under periodic pulse oscillation. Through simulations of the rate equations for primary frequency intensities and gains, we also verify that this effect can be attributed to gain competition and complementary conversion coefficient between second-harmonic and sum-frequency generations.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
    [CrossRef]
  2. T. Baer, “Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. B 3, 1175–1180 (1986).
    [CrossRef]
  3. G. J. Kintz, T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26, 1457–1460 (1990).
    [CrossRef]
  4. T. Sasaki, T. Kojima, A. Yokotani, O. Ogura, S. Nakai, “Single-longitudinal-mode operation and second-harmonic generation of Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1665–1668 (1991).
    [CrossRef] [PubMed]
  5. C. Pedersen, P. L. Hansen, P. Buchhave, “Diode-pumped single-frequency Nd:YVO4 laser with a set of coupled resonators,” Opt. Lett. 20, 1389–1391 (1995).
    [CrossRef] [PubMed]
  6. M. Oka, S. Kubota, “Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers,” Opt. Lett. 13, 805–807 (1988).
    [CrossRef] [PubMed]
  7. H. Nagai, M. Kume, A. Yoshikawa, K. Itoh, C. Hamaguchi, “Low-noise operation (-140 dB/Hz) in close-coupled Nd:YVO4 second-harmonic lasers pumped by single-mode laser diodes,” Appl. Opt. 35, 5392–5394 (1996).
    [CrossRef] [PubMed]
  8. G. E. James, E. M. Harrell, R. Roy, “Intermittency and chaos in intracavity doubled lasers II,” Phy. Rev. A 41, 2778–2790 (1990).
    [CrossRef]
  9. G. E. James, E. M. Harrell, C. Bracikowski, K. Wiesenfeld, R. Roy, “Elimination of chaos in an intracavity-doubled Nd:YAG laser,” Opt. Lett. 15, 1141–1143 (1990).
    [CrossRef] [PubMed]

1996 (1)

1995 (1)

1991 (1)

1990 (3)

G. J. Kintz, T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26, 1457–1460 (1990).
[CrossRef]

G. E. James, E. M. Harrell, R. Roy, “Intermittency and chaos in intracavity doubled lasers II,” Phy. Rev. A 41, 2778–2790 (1990).
[CrossRef]

G. E. James, E. M. Harrell, C. Bracikowski, K. Wiesenfeld, R. Roy, “Elimination of chaos in an intracavity-doubled Nd:YAG laser,” Opt. Lett. 15, 1141–1143 (1990).
[CrossRef] [PubMed]

1988 (2)

1986 (1)

Baer, T.

G. J. Kintz, T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26, 1457–1460 (1990).
[CrossRef]

T. Baer, “Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. B 3, 1175–1180 (1986).
[CrossRef]

Bracikowski, C.

Buchhave, P.

Byer, R. L.

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

Fan, T. Y.

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

Hamaguchi, C.

Hansen, P. L.

Harrell, E. M.

G. E. James, E. M. Harrell, R. Roy, “Intermittency and chaos in intracavity doubled lasers II,” Phy. Rev. A 41, 2778–2790 (1990).
[CrossRef]

G. E. James, E. M. Harrell, C. Bracikowski, K. Wiesenfeld, R. Roy, “Elimination of chaos in an intracavity-doubled Nd:YAG laser,” Opt. Lett. 15, 1141–1143 (1990).
[CrossRef] [PubMed]

Itoh, K.

James, G. E.

G. E. James, E. M. Harrell, C. Bracikowski, K. Wiesenfeld, R. Roy, “Elimination of chaos in an intracavity-doubled Nd:YAG laser,” Opt. Lett. 15, 1141–1143 (1990).
[CrossRef] [PubMed]

G. E. James, E. M. Harrell, R. Roy, “Intermittency and chaos in intracavity doubled lasers II,” Phy. Rev. A 41, 2778–2790 (1990).
[CrossRef]

Kintz, G. J.

G. J. Kintz, T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26, 1457–1460 (1990).
[CrossRef]

Kojima, T.

Kubota, S.

Kume, M.

Nagai, H.

Nakai, S.

Ogura, O.

Oka, M.

Pedersen, C.

Roy, R.

G. E. James, E. M. Harrell, R. Roy, “Intermittency and chaos in intracavity doubled lasers II,” Phy. Rev. A 41, 2778–2790 (1990).
[CrossRef]

G. E. James, E. M. Harrell, C. Bracikowski, K. Wiesenfeld, R. Roy, “Elimination of chaos in an intracavity-doubled Nd:YAG laser,” Opt. Lett. 15, 1141–1143 (1990).
[CrossRef] [PubMed]

Sasaki, T.

Wiesenfeld, K.

Yokotani, A.

Yoshikawa, A.

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

G. J. Kintz, T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26, 1457–1460 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Phy. Rev. A (1)

G. E. James, E. M. Harrell, R. Roy, “Intermittency and chaos in intracavity doubled lasers II,” Phy. Rev. A 41, 2778–2790 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Intensities for (a) vertical and (b) horizontal polarized modes of CPTMO.

Fig. 2
Fig. 2

Peak IR intensities for CPTMO and PPTMO. ϕ is the angle between the fast axes of Nd:YVO4 and KTP crystals.

Fig. 3
Fig. 3

Peak green intensities for CPTMO and PPTMO.

Fig. 4
Fig. 4

Doubling coefficient g versus ϕ.

Fig. 5
Fig. 5

Measured green power for (a) cross-polarized and (b) parallel-polarized periodic oscillations. The zero lines are at the lower-left corner where an inverted square marked 1 is located.

Fig. 6
Fig. 6

(a) Experimental results and (b) simulations of the temporal behavior of four-mode oscillation at various angles.

Tables (1)

Tables Icon

Table 1 Values of all the Parameters Used in Our Calculations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ c d I 1 , 2 d t = I 1 , 2 G 1 , 2 - α 1 , 2 - g ε I 1 , 2 - 2 ε gI 2 , 1   for PPTMO ,
τ c d I 1 , 2 d t = I 1 , 2 G 1 , 2 - α 1 , 2 - g ε I 1 , 2 - 2 ε 1 - g I 2 , 1   for CPTMO ,
τ f d G 1 , 2 d t = γ - G 1 , 2 1 + I 2 , 1 + β I 1 , 2   for all modes ,
I CPTMO = ε gI 1 2 + gI 2 2 + 4 1 - g I 1 I 2 ,
I PPTMO = ε gI 1 2 + gI 2 2 + 4 gI 1 I 2 .

Metrics