Abstract

Ultrabroadband (half-width of 88 nm) nanosecond Cr4+:forsterite oscillation was achieved simultaneously in the 1170–1340-nm range (1085 cm-1) by use of a spatially dispersed resonator with an intracavity prism pair. The laser demonstrates 4.8% real pump-to-laser efficiency. The oscillation build-up time for different spectral components is around 20 ns and varies by only 2.5 ns in the 1190–1260-nm region, which indicates that the ultrabroadband laser represents a complex multifrequency laser system with nonlinear spectral mode interaction.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Danailov, I. P. Christov, “A novel method of ultrabroadband laser generation,” Opt. Commun. 73, 235–238 (1989).
    [CrossRef]
  2. M. B. Danailov, I. P. Christov, “Ultrabroadband laser using prism-based ‘spatially-dispersive’ resonator,” Appl. Phys. B 51, 300–302 (1990).
    [CrossRef]
  3. M. B. Danailov, I. P. Christov, “Amplification of spatially-dispersed ultrabroadband laser pulses,” Opt. Commun. 77, 397–401 (1990).
    [CrossRef]
  4. V. H. Astinov, “Spatial modulation of the pump in the ultrabroadband dye laser with a ‘spatially-dispersive’ resonator,” Opt. Commun. 118, 297–301 (1995).
    [CrossRef]
  5. T. T. Basiev, P. G. Zverev, V. V. Fedorov, S. B. Mirov, “Solid-state laser with superbroadband or control generation spectrum,” in Solid State Lasers and Nonlinear Crystals, G. J. Quarles, L. Esterowitz, L. K. Chang, M. M. Sobey, eds., Proc. SPIE2379, 54–61 (1995).
    [CrossRef]
  6. V. V. Ter-Mikirtychev, T. Tsuboi, “Superbroadband laser using LiF:F2+* color center crystals,” in Proceedings of the Annual Meeting of the Japanese Physical Society, (Japanese Physical Society, Yamaguchi, Japan, 1996), p. 332.
  7. V. V. Ter-Mikirtychev, T. Tsuboi, “Ultrabroadband LiF:F2+* color center laser using two-prism spatially-dispersive resonator,” Opt. Commun. 137, 74–76 (1997).
    [CrossRef]
  8. V. V. Ter-Mikirtychev, “Ultrabroadband Al2O3:Ti3+ laser,” in Tunable Solid State Lasers, W. Strek, E. Lukowiak, B. Nissen-Sobocinska, eds., Proc. SPIE3176, 84–88 (1997).
    [CrossRef]
  9. V. V. Ter-Mikirtychev, “Ultrabroadband oscillation of Ti3+:sapphire laser,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 177–181.
  10. M. B. Danailov, I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61, 746–748 (1992).
    [CrossRef]
  11. I. T. McKinnie, L. A. W. Gloster, A. M. L. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
    [CrossRef]
  12. V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-activated forsterite for near infrared excitation,” Appl. Opt. 27, 4162–4163 (1988).
    [CrossRef] [PubMed]
  13. H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Chromium-doped forsterite laser pumped with 1064 nm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
    [CrossRef]
  14. T. J. Carrig, C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16, 1662–1664 (1991).
    [CrossRef] [PubMed]
  15. E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminium-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
    [CrossRef]
  16. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
    [CrossRef]
  17. I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity chromium forsterite laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 1996), pp. 72–75.
  18. G. Szabo, Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50, 51–54 (1990).
    [CrossRef]

1997 (1)

V. V. Ter-Mikirtychev, T. Tsuboi, “Ultrabroadband LiF:F2+* color center laser using two-prism spatially-dispersive resonator,” Opt. Commun. 137, 74–76 (1997).
[CrossRef]

1996 (1)

I. T. McKinnie, L. A. W. Gloster, A. M. L. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

1995 (1)

V. H. Astinov, “Spatial modulation of the pump in the ultrabroadband dye laser with a ‘spatially-dispersive’ resonator,” Opt. Commun. 118, 297–301 (1995).
[CrossRef]

1992 (1)

M. B. Danailov, I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61, 746–748 (1992).
[CrossRef]

1991 (2)

T. J. Carrig, C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16, 1662–1664 (1991).
[CrossRef] [PubMed]

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminium-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

1990 (3)

G. Szabo, Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50, 51–54 (1990).
[CrossRef]

M. B. Danailov, I. P. Christov, “Ultrabroadband laser using prism-based ‘spatially-dispersive’ resonator,” Appl. Phys. B 51, 300–302 (1990).
[CrossRef]

M. B. Danailov, I. P. Christov, “Amplification of spatially-dispersed ultrabroadband laser pulses,” Opt. Commun. 77, 397–401 (1990).
[CrossRef]

1989 (1)

M. B. Danailov, I. P. Christov, “A novel method of ultrabroadband laser generation,” Opt. Commun. 73, 235–238 (1989).
[CrossRef]

1988 (3)

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-activated forsterite for near infrared excitation,” Appl. Opt. 27, 4162–4163 (1988).
[CrossRef] [PubMed]

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Chromium-doped forsterite laser pumped with 1064 nm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Alfano, R. R.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-activated forsterite for near infrared excitation,” Appl. Opt. 27, 4162–4163 (1988).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Andrauskas, D. M.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Chromium-doped forsterite laser pumped with 1064 nm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

Anzai, H.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Astinov, V. H.

V. H. Astinov, “Spatial modulation of the pump in the ultrabroadband dye laser with a ‘spatially-dispersive’ resonator,” Opt. Commun. 118, 297–301 (1995).
[CrossRef]

Basiev, T. T.

T. T. Basiev, P. G. Zverev, V. V. Fedorov, S. B. Mirov, “Solid-state laser with superbroadband or control generation spectrum,” in Solid State Lasers and Nonlinear Crystals, G. J. Quarles, L. Esterowitz, L. K. Chang, M. M. Sobey, eds., Proc. SPIE2379, 54–61 (1995).
[CrossRef]

Behrens, E. G.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminium-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Bor, Z.

G. Szabo, Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50, 51–54 (1990).
[CrossRef]

Carrig, T. J.

Christov, I. P.

M. B. Danailov, I. P. Christov, “Amplification of spatially-dispersed ultrabroadband laser pulses,” Opt. Commun. 77, 397–401 (1990).
[CrossRef]

M. B. Danailov, I. P. Christov, “Ultrabroadband laser using prism-based ‘spatially-dispersive’ resonator,” Appl. Phys. B 51, 300–302 (1990).
[CrossRef]

M. B. Danailov, I. P. Christov, “A novel method of ultrabroadband laser generation,” Opt. Commun. 73, 235–238 (1989).
[CrossRef]

Danailov, M. B.

M. B. Danailov, I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61, 746–748 (1992).
[CrossRef]

M. B. Danailov, I. P. Christov, “Ultrabroadband laser using prism-based ‘spatially-dispersive’ resonator,” Appl. Phys. B 51, 300–302 (1990).
[CrossRef]

M. B. Danailov, I. P. Christov, “Amplification of spatially-dispersed ultrabroadband laser pulses,” Opt. Commun. 77, 397–401 (1990).
[CrossRef]

M. B. Danailov, I. P. Christov, “A novel method of ultrabroadband laser generation,” Opt. Commun. 73, 235–238 (1989).
[CrossRef]

Fedorov, V. V.

T. T. Basiev, P. G. Zverev, V. V. Fedorov, S. B. Mirov, “Solid-state laser with superbroadband or control generation spectrum,” in Solid State Lasers and Nonlinear Crystals, G. J. Quarles, L. Esterowitz, L. K. Chang, M. M. Sobey, eds., Proc. SPIE2379, 54–61 (1995).
[CrossRef]

Gayen, S. K.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-activated forsterite for near infrared excitation,” Appl. Opt. 27, 4162–4163 (1988).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Gloster, L. A. W.

I. T. McKinnie, L. A. W. Gloster, A. M. L. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

Jani, M. G.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminium-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

King, T. A.

I. T. McKinnie, L. A. W. Gloster, A. M. L. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

McCollum, T.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Chromium-doped forsterite laser pumped with 1064 nm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

McKinnie, I. T.

I. T. McKinnie, L. A. W. Gloster, A. M. L. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity chromium forsterite laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 1996), pp. 72–75.

Milev, I. Y.

M. B. Danailov, I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61, 746–748 (1992).
[CrossRef]

Mirov, S. B.

T. T. Basiev, P. G. Zverev, V. V. Fedorov, S. B. Mirov, “Solid-state laser with superbroadband or control generation spectrum,” in Solid State Lasers and Nonlinear Crystals, G. J. Quarles, L. Esterowitz, L. K. Chang, M. M. Sobey, eds., Proc. SPIE2379, 54–61 (1995).
[CrossRef]

Oien, A. M. L.

I. T. McKinnie, L. A. W. Gloster, A. M. L. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

Petricevic, V.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-activated forsterite for near infrared excitation,” Appl. Opt. 27, 4162–4163 (1988).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Pinto, A.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminium-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Chromium-doped forsterite laser pumped with 1064 nm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

Pollock, C. R.

Powell, R. C.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminium-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Szabo, G.

G. Szabo, Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50, 51–54 (1990).
[CrossRef]

Ter-Mikirtychev, V. V.

V. V. Ter-Mikirtychev, T. Tsuboi, “Ultrabroadband LiF:F2+* color center laser using two-prism spatially-dispersive resonator,” Opt. Commun. 137, 74–76 (1997).
[CrossRef]

V. V. Ter-Mikirtychev, “Ultrabroadband Al2O3:Ti3+ laser,” in Tunable Solid State Lasers, W. Strek, E. Lukowiak, B. Nissen-Sobocinska, eds., Proc. SPIE3176, 84–88 (1997).
[CrossRef]

V. V. Ter-Mikirtychev, “Ultrabroadband oscillation of Ti3+:sapphire laser,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 177–181.

V. V. Ter-Mikirtychev, T. Tsuboi, “Superbroadband laser using LiF:F2+* color center crystals,” in Proceedings of the Annual Meeting of the Japanese Physical Society, (Japanese Physical Society, Yamaguchi, Japan, 1996), p. 332.

Thomas, L. M.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Chromium-doped forsterite laser pumped with 1064 nm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

Tiffany, A. J.

I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity chromium forsterite laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 1996), pp. 72–75.

Tsuboi, T.

V. V. Ter-Mikirtychev, T. Tsuboi, “Ultrabroadband LiF:F2+* color center laser using two-prism spatially-dispersive resonator,” Opt. Commun. 137, 74–76 (1997).
[CrossRef]

V. V. Ter-Mikirtychev, T. Tsuboi, “Superbroadband laser using LiF:F2+* color center crystals,” in Proceedings of the Annual Meeting of the Japanese Physical Society, (Japanese Physical Society, Yamaguchi, Japan, 1996), p. 332.

Verdun, H. R.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminium-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Chromium-doped forsterite laser pumped with 1064 nm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

Warrington, D. M.

I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity chromium forsterite laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 1996), pp. 72–75.

Yamagishi, K.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Yamaguchi, Y.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Zverev, P. G.

T. T. Basiev, P. G. Zverev, V. V. Fedorov, S. B. Mirov, “Solid-state laser with superbroadband or control generation spectrum,” in Solid State Lasers and Nonlinear Crystals, G. J. Quarles, L. Esterowitz, L. K. Chang, M. M. Sobey, eds., Proc. SPIE2379, 54–61 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

G. Szabo, Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50, 51–54 (1990).
[CrossRef]

M. B. Danailov, I. P. Christov, “Ultrabroadband laser using prism-based ‘spatially-dispersive’ resonator,” Appl. Phys. B 51, 300–302 (1990).
[CrossRef]

Appl. Phys. Lett. (3)

M. B. Danailov, I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61, 746–748 (1992).
[CrossRef]

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Chromium-doped forsterite laser pumped with 1064 nm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminium-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Opt. Commun. (5)

M. B. Danailov, I. P. Christov, “A novel method of ultrabroadband laser generation,” Opt. Commun. 73, 235–238 (1989).
[CrossRef]

I. T. McKinnie, L. A. W. Gloster, A. M. L. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

V. V. Ter-Mikirtychev, T. Tsuboi, “Ultrabroadband LiF:F2+* color center laser using two-prism spatially-dispersive resonator,” Opt. Commun. 137, 74–76 (1997).
[CrossRef]

M. B. Danailov, I. P. Christov, “Amplification of spatially-dispersed ultrabroadband laser pulses,” Opt. Commun. 77, 397–401 (1990).
[CrossRef]

V. H. Astinov, “Spatial modulation of the pump in the ultrabroadband dye laser with a ‘spatially-dispersive’ resonator,” Opt. Commun. 118, 297–301 (1995).
[CrossRef]

Opt. Lett. (1)

Other (5)

I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity chromium forsterite laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 1996), pp. 72–75.

T. T. Basiev, P. G. Zverev, V. V. Fedorov, S. B. Mirov, “Solid-state laser with superbroadband or control generation spectrum,” in Solid State Lasers and Nonlinear Crystals, G. J. Quarles, L. Esterowitz, L. K. Chang, M. M. Sobey, eds., Proc. SPIE2379, 54–61 (1995).
[CrossRef]

V. V. Ter-Mikirtychev, T. Tsuboi, “Superbroadband laser using LiF:F2+* color center crystals,” in Proceedings of the Annual Meeting of the Japanese Physical Society, (Japanese Physical Society, Yamaguchi, Japan, 1996), p. 332.

V. V. Ter-Mikirtychev, “Ultrabroadband Al2O3:Ti3+ laser,” in Tunable Solid State Lasers, W. Strek, E. Lukowiak, B. Nissen-Sobocinska, eds., Proc. SPIE3176, 84–88 (1997).
[CrossRef]

V. V. Ter-Mikirtychev, “Ultrabroadband oscillation of Ti3+:sapphire laser,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 177–181.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the resonator cavity and pump geometry of the ultrabroadband Cr4+:forsterite laser: M1, M2, mirrors; P1, P2, prisms; D, diaphragm; C, Cr4+:forsterite crystal. Ray tracing for two wavelengths is shown: λ1 (solid curve) and λ2 (broken curve, such that λ2 < λ1).

Fig. 2
Fig. 2

Curve a, spectrum of the ultrabroadband Cr4+:forsterite laser obtained with a diaphragm slit width of 2 mm. Curve b, free-running spectrum of the forsterite laser measured with a two-mirror resonator with the same mirrors and pump method as shown in Fig. 1. Curve c, tuning curve of the forsterite laser obtained with a Brewster prism cavity. Curve d, tuning curve of the forsterite laser obtained with a Littrow grating cavity. These curves were obtained using the same crystal and were normalized to their maximum intensities.

Fig. 3
Fig. 3

Ultrabroadband Cr4+:forsterite laser pulse duration as a function of pump pulse energy.

Fig. 4
Fig. 4

Build-up time of the ultrabroadband Cr4+:forsterite laser pulse as a function of 1064-nm pump pulse energy.

Fig. 5
Fig. 5

Cr4+:fortserite ultrabroadband laser efficiency (filled circles, left scale) and the output energy (open circles, right scale) as a function of pump pulse energy.

Fig. 6
Fig. 6

Build-up time of the ultrabroadband Cr4+:forsterite laser as a function of operating wavelength. The pump pulse energy is 200 mJ.

Metrics