Abstract

We have developed a unique numerical laser model by use of a commercial physical optics software package. The experimentally measured lasing threshold, slope efficiency, power output distribution, and phase front have been derived. This model is particularly powerful for monitoring the effects caused by thermal distortions encountered in power scaling lasers. Extrapolations have been made through parametric studies to predict changes required in the laser design that would optimize the performance of the laser.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Afzal, M. D. Selker, “Simple high-efficiency TEM00 diode-laser pumped Q-switched laser,” Opt. Lett. 20, 465–467 (1995).
    [CrossRef] [PubMed]
  2. J. L. Dallas, R. S. Afzal, “High average power scaling of a compact, Q-switched, diode pumped, Nd:YAG laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 395–397.
  3. K. Kubodera, K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50, 653–659 (1979).
    [CrossRef]
  4. R. B. Chesler, “Optimized TEM00 output from a uniformly pumped four-level laser,” IEEE J. Quantum Electron. QE-8, 493–496 (1972).
    [CrossRef]
  5. D. G. Hall, “Optimum mode size criterion for low-gain lasers,” Appl. Opt. 20, 1579–1583 (1981).
    [CrossRef] [PubMed]
  6. S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).
    [CrossRef]
  7. A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
  8. Applied Optics Research, 59 Stonington Drive, Pittsford, N.Y. 14534.
  9. J. L. Dallas, “Investigation of the spatial cavity mode and gain distribution overlap parameters within a diode-pumped Nd:YAG laser,” Ph.D. dissertation (Catholic University of America, Washington, D.C., 1996).
  10. J. M. Eggleston, L. M. Frantz, H. Injeyan, “Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum. Electron. 25, 1855–1862 (1989).
    [CrossRef]
  11. J. L. Dallas, T. S. Rose, R. S. Afzal, “Physical optics modeling of a stripe pumped laser,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 366–369.
  12. F. P. Schafer, “On some properties of axicons,” Appl. Phys. B 39, 1–8 (1986).
    [CrossRef]
  13. A. McInnes, J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
    [CrossRef]

1996

A. McInnes, J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

1995

1992

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).
[CrossRef]

1989

J. M. Eggleston, L. M. Frantz, H. Injeyan, “Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum. Electron. 25, 1855–1862 (1989).
[CrossRef]

1986

F. P. Schafer, “On some properties of axicons,” Appl. Phys. B 39, 1–8 (1986).
[CrossRef]

1981

1979

K. Kubodera, K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50, 653–659 (1979).
[CrossRef]

1972

R. B. Chesler, “Optimized TEM00 output from a uniformly pumped four-level laser,” IEEE J. Quantum Electron. QE-8, 493–496 (1972).
[CrossRef]

1961

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

Afzal, R. S.

R. S. Afzal, M. D. Selker, “Simple high-efficiency TEM00 diode-laser pumped Q-switched laser,” Opt. Lett. 20, 465–467 (1995).
[CrossRef] [PubMed]

J. L. Dallas, R. S. Afzal, “High average power scaling of a compact, Q-switched, diode pumped, Nd:YAG laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 395–397.

J. L. Dallas, T. S. Rose, R. S. Afzal, “Physical optics modeling of a stripe pumped laser,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 366–369.

Bowers, M. S.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).
[CrossRef]

Chesler, R. B.

R. B. Chesler, “Optimized TEM00 output from a uniformly pumped four-level laser,” IEEE J. Quantum Electron. QE-8, 493–496 (1972).
[CrossRef]

Cousins, A. K.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).
[CrossRef]

Dallas, J. L.

J. L. Dallas, R. S. Afzal, “High average power scaling of a compact, Q-switched, diode pumped, Nd:YAG laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 395–397.

J. L. Dallas, “Investigation of the spatial cavity mode and gain distribution overlap parameters within a diode-pumped Nd:YAG laser,” Ph.D. dissertation (Catholic University of America, Washington, D.C., 1996).

J. L. Dallas, T. S. Rose, R. S. Afzal, “Physical optics modeling of a stripe pumped laser,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 366–369.

Eggleston, J. M.

J. M. Eggleston, L. M. Frantz, H. Injeyan, “Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum. Electron. 25, 1855–1862 (1989).
[CrossRef]

Fox, A. G.

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

Frantz, L. M.

J. M. Eggleston, L. M. Frantz, H. Injeyan, “Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum. Electron. 25, 1855–1862 (1989).
[CrossRef]

Hall, D. G.

Injeyan, H.

J. M. Eggleston, L. M. Frantz, H. Injeyan, “Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum. Electron. 25, 1855–1862 (1989).
[CrossRef]

Kubodera, K.

K. Kubodera, K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50, 653–659 (1979).
[CrossRef]

Li, T.

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

McInnes, A.

A. McInnes, J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

Otsuka, K.

K. Kubodera, K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50, 653–659 (1979).
[CrossRef]

Richards, J.

A. McInnes, J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

Rose, T. S.

J. L. Dallas, T. S. Rose, R. S. Afzal, “Physical optics modeling of a stripe pumped laser,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 366–369.

Schafer, F. P.

F. P. Schafer, “On some properties of axicons,” Appl. Phys. B 39, 1–8 (1986).
[CrossRef]

Seamans, J. F.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).
[CrossRef]

Selker, M. D.

Tidwell, S. C.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. B

F. P. Schafer, “On some properties of axicons,” Appl. Phys. B 39, 1–8 (1986).
[CrossRef]

Bell Syst. Tech. J.

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

IEEE J. Quantum Electron.

A. McInnes, J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).
[CrossRef]

R. B. Chesler, “Optimized TEM00 output from a uniformly pumped four-level laser,” IEEE J. Quantum Electron. QE-8, 493–496 (1972).
[CrossRef]

IEEE J. Quantum. Electron.

J. M. Eggleston, L. M. Frantz, H. Injeyan, “Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum. Electron. 25, 1855–1862 (1989).
[CrossRef]

J. Appl. Phys.

K. Kubodera, K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50, 653–659 (1979).
[CrossRef]

Opt. Lett.

Other

J. L. Dallas, R. S. Afzal, “High average power scaling of a compact, Q-switched, diode pumped, Nd:YAG laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 395–397.

J. L. Dallas, T. S. Rose, R. S. Afzal, “Physical optics modeling of a stripe pumped laser,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 366–369.

Applied Optics Research, 59 Stonington Drive, Pittsford, N.Y. 14534.

J. L. Dallas, “Investigation of the spatial cavity mode and gain distribution overlap parameters within a diode-pumped Nd:YAG laser,” Ph.D. dissertation (Catholic University of America, Washington, D.C., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Layout of a cw diode-pumped laser.

Fig. 2
Fig. 2

OPD along the optical axis of the zigzag slab while it is being side pumped at various powers. Some data smoothing along the Y axis was performed to compensate for high frequency aberrations arising from inferior relay optics in the experimental setup.

Fig. 3
Fig. 3

(a) After two round trips, the gain stripe and hard rectangular aperture of the slab are apparent in the output beam’s intensity distribution. (b) After seven round trips, the center region continues to grow where it overlaps with the gain stripe. (c) A single-lobe beam intensity distribution is formed after ten round trips. The spatial scale of each plot is 5 mm × 5 mm.

Fig. 4
Fig. 4

(a) After two round trips, the pump-induced OPD and hard rectangular aperture of the slab are apparent in the output beam’s phase distribution. (b), (c) Resultant phase front distribution after successive cavity round trips.

Fig. 5
Fig. 5

Modeled convergence of laser output at various pump powers.

Fig. 6
Fig. 6

Comparison of experimental and model pump efficiency.

Fig. 7
Fig. 7

Beam profiles at 18 and 32 cm from the laser as predicted by the model and measured experimentally by use of beamcode.

Fig. 8
Fig. 8

Modeled He–Ne laser beam breakup after the beam passed through the pumped slab. Circular data points indicate experimental peak values.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g 0 = n s P abs I sat V γ , P abs = P pump 1 - R slab 1 - exp - 2 W α n q I sat = h ν σ τ ,

Metrics