Abstract

Two-dimensional distributions of the effective lifetime of the fluorescence emission induced by short-pulsed laser radiation are obtained from two-dimensional images recorded with a streak camera and a charge-coupled device by means of a separation algorithm method (SAM). In theory, the best response with respect to noise is obtained for lifetimes corresponding to a range of pixels of 5–50 in the CCD, that is, 5–50 ps at the fastest streak speed. In experiments the SAM is compared with pure time-resolved measurements, and it is used for two-dimensional lifetime evaluation. The laser-pulse duration is 25 ps, and the lower limit of the lifetime resolution as used in the experiments is estimated to be 200–250 ps. The results demonstrate the possibility of performing pattern recognition independently of the relative distribution of emission intensity between regions of different fluorescence lifetimes. The technique is demonstrated for static objects but can in principle be extended to nonstationary objects if two detectors are used.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, 1996).
  2. E. H. Piepmeier, “Theory of laser saturated atomic resonance fluorescence,” Spectrochim. Acta B 27, 431–443 (1972).
    [CrossRef]
  3. J. T. Salmon, N. M. Laurendeau, “Absolute concentration measurements of atomic hydrogen in subatmospheric premixed H2/O2/N2-flat flames with photoionization controlled loss spectroscopy,” Appl. Opt. 26, 2881–2891 (1987).
    [CrossRef] [PubMed]
  4. P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric pressure flame,” Appl. Opt. 27, 365–378 (1988).
    [CrossRef] [PubMed]
  5. H. M. Hertz, M. Aldén, “Calibration of imaging laser-induced fluorescence measurements in highly absorbing flames,” Appl. Phys. B 42, 97–102 (1987).
    [CrossRef]
  6. J. H. Bechtel, R. E. Teets, “Hydroxyl and its concentration profile in methane–air flames,” Appl. Opt. 18, 4138–4144 (1979).
    [CrossRef] [PubMed]
  7. N. S. Bergano, P. A. Jaanimagi, M. M. Salour, J. H. Bechtel, “Picosecond laser-spectroscopy measurements of hydroxyl fluorescence lifetime in flames,” Opt. Lett. 8, 443–445 (1983).
    [CrossRef] [PubMed]
  8. M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
    [CrossRef]
  9. R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence lifetimes for nitric oxide in atmospheric pressure flames using picosecond excitation,” Chem. Phys. Lett. 158, 60–63 (1989).
    [CrossRef]
  10. S. Agrup, M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
    [CrossRef]
  11. S. Agrup, M. Aldén, “Measurement of the collisionally quenched lifetime of CO in hydrocarbon flames,” Appl. Spectrosc. 48, 1118–1124 (1994).
    [CrossRef]
  12. S. Agrup, F. Ossler, M. Aldén, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
    [CrossRef]
  13. F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
    [CrossRef]
  14. J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2Σ+ (v′ = 3) obtained from optical–optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
    [CrossRef]
  15. A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
    [CrossRef]
  16. T. Ni, L. A. Melton, “Fluorescence lifetime imaging: an approach for fuel equivalence ratio imaging,” Appl. Spectrosc. 45, 938–943 (1991).
    [CrossRef]
  17. T. Ni, L. A. Melton, “Fuel equivalence ratio imaging for methane jets,” Appl. Spectrosc. 47, 773–781 (1993).
    [CrossRef]
  18. T. Ni, L. A. Melton, “Two-dimensional gas-phase temperature measurements using fluorescence lifetime imaging,” Appl. Spectrosc. 50, 1112–1116 (1996).
    [CrossRef]
  19. M. Tsujishita, A. Hirano, “Two-dimensional quenching lifetime measurements of OH A2Σ+ (v′ = 1) and NO A2Σ (v′ = 0) in atmospheric-pressure flames,” Appl. Phys. B 62, 255–262 (1996).
    [CrossRef]
  20. F. C. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision-insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
    [CrossRef]
  21. F. C. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Picosecond planar laser-induced fluorescence measurements of OH A2Σ+ (v′ = 2) lifetime and energy transfer in atmospheric-pressure flames,” Appl. Opt. 36, 6129–6140 (1997).
    [CrossRef]
  22. J. R. Lakowicz, “Emerging biomedical applications of time-resolved fluorescence spectroscopy,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1994), Vol. 4, Chap. 1, pp. 12–19.
  23. R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnostics of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993);R. Cubeddu, R. Pifferi, P. Taroni, G. Valentini, G. Canti, “Tumor detection in mice by measurement of fluorescence decay time matrices,” Opt. Lett. 20, 2553–2555 (1995).
    [CrossRef] [PubMed]
  24. J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
    [CrossRef]
  25. K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135, 27–31 (1997).
    [CrossRef]
  26. E. R. Menzel, “Detection of latent fingerprints by laser-excited luminescence,” Anal. Chem. 61, 557A–561A (1989).
  27. S. Anderson-Engels, I. Rokhar, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. 176, 195–203 (1994).
    [CrossRef]
  28. H. S. Szmacinski, J. R. Lakowicz, “Lifetime-based sensing,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1994). Vol. 4, Chap. 10, p. 310.
  29. Lund Institute of Technology, Reports on Atomic Physics LRAP-93 (Lund Institute of Technology, Lund, Sweden, 1989), in Swedish.

1997 (2)

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135, 27–31 (1997).
[CrossRef]

F. C. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Picosecond planar laser-induced fluorescence measurements of OH A2Σ+ (v′ = 2) lifetime and energy transfer in atmospheric-pressure flames,” Appl. Opt. 36, 6129–6140 (1997).
[CrossRef]

1996 (4)

T. Ni, L. A. Melton, “Two-dimensional gas-phase temperature measurements using fluorescence lifetime imaging,” Appl. Spectrosc. 50, 1112–1116 (1996).
[CrossRef]

M. Tsujishita, A. Hirano, “Two-dimensional quenching lifetime measurements of OH A2Σ+ (v′ = 1) and NO A2Σ (v′ = 0) in atmospheric-pressure flames,” Appl. Phys. B 62, 255–262 (1996).
[CrossRef]

F. C. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision-insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
[CrossRef]

1995 (1)

S. Agrup, F. Ossler, M. Aldén, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
[CrossRef]

1994 (2)

S. Anderson-Engels, I. Rokhar, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. 176, 195–203 (1994).
[CrossRef]

S. Agrup, M. Aldén, “Measurement of the collisionally quenched lifetime of CO in hydrocarbon flames,” Appl. Spectrosc. 48, 1118–1124 (1994).
[CrossRef]

1993 (3)

T. Ni, L. A. Melton, “Fuel equivalence ratio imaging for methane jets,” Appl. Spectrosc. 47, 773–781 (1993).
[CrossRef]

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnostics of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993);R. Cubeddu, R. Pifferi, P. Taroni, G. Valentini, G. Canti, “Tumor detection in mice by measurement of fluorescence decay time matrices,” Opt. Lett. 20, 2553–2555 (1995).
[CrossRef] [PubMed]

1992 (1)

S. Agrup, M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

1991 (3)

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2Σ+ (v′ = 3) obtained from optical–optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

T. Ni, L. A. Melton, “Fluorescence lifetime imaging: an approach for fuel equivalence ratio imaging,” Appl. Spectrosc. 45, 938–943 (1991).
[CrossRef]

1990 (1)

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

1989 (2)

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence lifetimes for nitric oxide in atmospheric pressure flames using picosecond excitation,” Chem. Phys. Lett. 158, 60–63 (1989).
[CrossRef]

E. R. Menzel, “Detection of latent fingerprints by laser-excited luminescence,” Anal. Chem. 61, 557A–561A (1989).

1988 (1)

1987 (2)

1983 (1)

1979 (1)

1972 (1)

E. H. Piepmeier, “Theory of laser saturated atomic resonance fluorescence,” Spectrochim. Acta B 27, 431–443 (1972).
[CrossRef]

Agrup, S.

S. Agrup, F. Ossler, M. Aldén, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
[CrossRef]

S. Agrup, M. Aldén, “Measurement of the collisionally quenched lifetime of CO in hydrocarbon flames,” Appl. Spectrosc. 48, 1118–1124 (1994).
[CrossRef]

S. Agrup, M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

Aldén, M.

F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
[CrossRef]

S. Agrup, F. Ossler, M. Aldén, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
[CrossRef]

S. Agrup, M. Aldén, “Measurement of the collisionally quenched lifetime of CO in hydrocarbon flames,” Appl. Spectrosc. 48, 1118–1124 (1994).
[CrossRef]

S. Agrup, M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

H. M. Hertz, M. Aldén, “Calibration of imaging laser-induced fluorescence measurements in highly absorbing flames,” Appl. Phys. B 42, 97–102 (1987).
[CrossRef]

Anderson-Engels, S.

S. Anderson-Engels, I. Rokhar, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. 176, 195–203 (1994).
[CrossRef]

Andresen, P.

Bath, A.

Bechtel, J. H.

Bergano, N. S.

Berndt, K. W.

J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

Bormann, F. C.

F. C. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Picosecond planar laser-induced fluorescence measurements of OH A2Σ+ (v′ = 2) lifetime and energy transfer in atmospheric-pressure flames,” Appl. Opt. 36, 6129–6140 (1997).
[CrossRef]

F. C. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision-insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

Burrows, M.

F. C. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Picosecond planar laser-induced fluorescence measurements of OH A2Σ+ (v′ = 2) lifetime and energy transfer in atmospheric-pressure flames,” Appl. Opt. 36, 6129–6140 (1997).
[CrossRef]

F. C. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision-insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

Canti, G.

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnostics of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993);R. Cubeddu, R. Pifferi, P. Taroni, G. Valentini, G. Canti, “Tumor detection in mice by measurement of fluorescence decay time matrices,” Opt. Lett. 20, 2553–2555 (1995).
[CrossRef] [PubMed]

Carlsson, J.

S. Anderson-Engels, I. Rokhar, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. 176, 195–203 (1994).
[CrossRef]

Cubeddu, R.

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnostics of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993);R. Cubeddu, R. Pifferi, P. Taroni, G. Valentini, G. Canti, “Tumor detection in mice by measurement of fluorescence decay time matrices,” Opt. Lett. 20, 2553–2555 (1995).
[CrossRef] [PubMed]

Dainty, J. C.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135, 27–31 (1997).
[CrossRef]

Dowling, K.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135, 27–31 (1997).
[CrossRef]

Dreizler, A.

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, 1996).

Farrow, R. L.

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2Σ+ (v′ = 3) obtained from optical–optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

French, P. M. W.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135, 27–31 (1997).
[CrossRef]

Gray, J. A.

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2Σ+ (v′ = 3) obtained from optical–optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

Gröger, W.

Hares, J. D.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135, 27–31 (1997).
[CrossRef]

Hertz, H. M.

H. M. Hertz, M. Aldén, “Calibration of imaging laser-induced fluorescence measurements in highly absorbing flames,” Appl. Phys. B 42, 97–102 (1987).
[CrossRef]

Hirano, A.

M. Tsujishita, A. Hirano, “Two-dimensional quenching lifetime measurements of OH A2Σ+ (v′ = 1) and NO A2Σ (v′ = 0) in atmospheric-pressure flames,” Appl. Phys. B 62, 255–262 (1996).
[CrossRef]

Hyde, S. C. W.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135, 27–31 (1997).
[CrossRef]

Jaanimagi, P. A.

Köllner, M.

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

H. S. Szmacinski, J. R. Lakowicz, “Lifetime-based sensing,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1994). Vol. 4, Chap. 10, p. 310.

J. R. Lakowicz, “Emerging biomedical applications of time-resolved fluorescence spectroscopy,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1994), Vol. 4, Chap. 1, pp. 12–19.

Larsson, J.

F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
[CrossRef]

Laurendeau, N. M.

Lülf, H. W.

Meijer, G.

Melton, L. A.

Menzel, E. R.

E. R. Menzel, “Detection of latent fingerprints by laser-excited luminescence,” Anal. Chem. 61, 557A–561A (1989).

Monkhouse, P.

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence lifetimes for nitric oxide in atmospheric pressure flames using picosecond excitation,” Chem. Phys. Lett. 158, 60–63 (1989).
[CrossRef]

Ni, T.

Nielsen, T.

F. C. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Picosecond planar laser-induced fluorescence measurements of OH A2Σ+ (v′ = 2) lifetime and energy transfer in atmospheric-pressure flames,” Appl. Opt. 36, 6129–6140 (1997).
[CrossRef]

F. C. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision-insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

Ossler, F.

F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
[CrossRef]

S. Agrup, F. Ossler, M. Aldén, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
[CrossRef]

Piepmeier, E. H.

E. H. Piepmeier, “Theory of laser saturated atomic resonance fluorescence,” Spectrochim. Acta B 27, 431–443 (1972).
[CrossRef]

Rokhar, I.

S. Anderson-Engels, I. Rokhar, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. 176, 195–203 (1994).
[CrossRef]

Salmon, J. T.

Salour, M. M.

Schwarzwald, R.

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence lifetimes for nitric oxide in atmospheric pressure flames using picosecond excitation,” Chem. Phys. Lett. 158, 60–63 (1989).
[CrossRef]

Szmacinski, H. S.

H. S. Szmacinski, J. R. Lakowicz, “Lifetime-based sensing,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1994). Vol. 4, Chap. 10, p. 310.

Tadday, R.

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

Taroni, P.

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnostics of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993);R. Cubeddu, R. Pifferi, P. Taroni, G. Valentini, G. Canti, “Tumor detection in mice by measurement of fluorescence decay time matrices,” Opt. Lett. 20, 2553–2555 (1995).
[CrossRef] [PubMed]

Teets, R. E.

ter Meulen, J. J.

Tsujishita, M.

M. Tsujishita, A. Hirano, “Two-dimensional quenching lifetime measurements of OH A2Σ+ (v′ = 1) and NO A2Σ (v′ = 0) in atmospheric-pressure flames,” Appl. Phys. B 62, 255–262 (1996).
[CrossRef]

Valentini, G.

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnostics of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993);R. Cubeddu, R. Pifferi, P. Taroni, G. Valentini, G. Canti, “Tumor detection in mice by measurement of fluorescence decay time matrices,” Opt. Lett. 20, 2553–2555 (1995).
[CrossRef] [PubMed]

Wolfrum, J.

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence lifetimes for nitric oxide in atmospheric pressure flames using picosecond excitation,” Chem. Phys. Lett. 158, 60–63 (1989).
[CrossRef]

Anal. Chem. (1)

E. R. Menzel, “Detection of latent fingerprints by laser-excited luminescence,” Anal. Chem. 61, 557A–561A (1989).

Appl. Opt. (4)

Appl. Phys. B (4)

M. Tsujishita, A. Hirano, “Two-dimensional quenching lifetime measurements of OH A2Σ+ (v′ = 1) and NO A2Σ (v′ = 0) in atmospheric-pressure flames,” Appl. Phys. B 62, 255–262 (1996).
[CrossRef]

F. C. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision-insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

H. M. Hertz, M. Aldén, “Calibration of imaging laser-induced fluorescence measurements in highly absorbing flames,” Appl. Phys. B 42, 97–102 (1987).
[CrossRef]

Appl. Phys. B. (1)

S. Agrup, F. Ossler, M. Aldén, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
[CrossRef]

Appl. Spectrosc. (4)

Chem. Phys. Lett. (4)

F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
[CrossRef]

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence lifetimes for nitric oxide in atmospheric pressure flames using picosecond excitation,” Chem. Phys. Lett. 158, 60–63 (1989).
[CrossRef]

S. Agrup, M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

J. Chem. Phys. (1)

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2Σ+ (v′ = 3) obtained from optical–optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

J. Microsc. (1)

S. Anderson-Engels, I. Rokhar, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. 176, 195–203 (1994).
[CrossRef]

Opt. Commun. (1)

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135, 27–31 (1997).
[CrossRef]

Opt. Lett. (1)

Photochem. Photobiol. (1)

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnostics of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993);R. Cubeddu, R. Pifferi, P. Taroni, G. Valentini, G. Canti, “Tumor detection in mice by measurement of fluorescence decay time matrices,” Opt. Lett. 20, 2553–2555 (1995).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

Spectrochim. Acta B (1)

E. H. Piepmeier, “Theory of laser saturated atomic resonance fluorescence,” Spectrochim. Acta B 27, 431–443 (1972).
[CrossRef]

Other (4)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, 1996).

J. R. Lakowicz, “Emerging biomedical applications of time-resolved fluorescence spectroscopy,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1994), Vol. 4, Chap. 1, pp. 12–19.

H. S. Szmacinski, J. R. Lakowicz, “Lifetime-based sensing,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1994). Vol. 4, Chap. 10, p. 310.

Lund Institute of Technology, Reports on Atomic Physics LRAP-93 (Lund Institute of Technology, Lund, Sweden, 1989), in Swedish.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic focus and streak images for two cases: (a), (b) conventional 1-D measurement and (c), (d) measurement that requires the SAM. For (a) and (b) the coordinate for the spatial information (y) is orthogonal to the direction of the time representation (x) in the streak image (b). The intensities at points A–D in the focus image (a) correspond to the respective areas below the curves in the streak image (b). The decay constants at A–D can be evaluated with the procedures normally used for lifetime evaluation. (c) Intensities in the focus image at points A–D distributed along the x axis, i.e., the second coordinate needed for 2-D spatial resolution. The corresponding intensity distribution in the streak image (d) along the time axis (x) no longer displays a simple decay because the time and spatial axes are no longer independent. The time-resolved curves overlap, and the bold curve in (d) displays the sum of the curves. Therefore a separation algorithm is needed to separate spatial from temporal information to yield the decay constants at points A–D.

Fig. 2
Fig. 2

Calculated streak and focus images. (a) The predefined lifetime distribution used in the calculations at the distributions of concentration in (b) and (c). (b) Moderate (DG1), (c) high (DG10) dynamic ranges. (d), (e) Resulting streak and focus images with 5% noise added with respect to the maximum of the corresponding focus images.

Fig. 3
Fig. 3

Sensitivity of the retrieved lifetime distribution with respect to noise. (a) Relative deviation from the true value of the lifetime retrieved with the RA at 0.1% random noise on streak and focus images at DG1. (b) Corresponding results for DG10, where the horizontal bars represent, from the bottom to the top, the range of pixels δε for ε = 0.1, 0.6, 10, 20, 30%. (c), (d) Corresponding deviations after the retrieved lifetimes are averaged over 11 points. (e), (f) Deviations for the RA at 2% noise on both streak and focus images. After averaging over the streak and the focus images the lifetimes were evaluated and then averaged over 11 pixels.

Fig. 4
Fig. 4

Experimental setup: 1, Nd:YAG picosecond laser; 2, contracting telescope; 3, delay line; 4, mask; 5, cylindrical or spherical quartz lens; 6, prism; 7, fluorescent object; 8, mirror; 9, spherical quartz lens; 10, streak camera; 11, CCD; 12, CCD controller; 13, personal computer.

Fig. 5
Fig. 5

Principle of the technique used for comparison of the TRM and the SAM. (a) In a time-resolved 1-D experiment the lifetime distribution of the fluorescence emission on the output of the streak appears orthogonal to the direction of the streak. In a 2-D experiment there is also a lifetime distribution in the direction of the streak. (b) Two independent time-resolved measurements (the two topmost graphs) are performed and the resulting images are superposed, corresponding to a measurement of the lifetime distribution along a segment in the direction of the streak. (c) The SAM is performed and the resulting lifetime distribution along the segment is obtained.

Fig. 6
Fig. 6

1-D measurement: Comparison between the TRM and the SAM of the results obtained for the lifetime evaluation. (a) Images on a combined set of tips of paper with different lifetimes were recorded, with the spatially resolved axis 45° relative to that of the streak axis. The same 1-D object was recorded once again, but with the spatially resolved axis parallel to the streak. The images are shown in an inverted gray scale. The TRM was applied to the two upper images at different points; the SAM was applied to the lower images. (b) Results from the TRM and the SAM compared as a function of channel number of the CCD. The positions for the TRM results were corrected for the axis rotation in the upper images. The counts in the streak and the focus images were summed over 11 rows and averaged over 11 columns. The difference in the results obtained with the two techniques was estimated to be 10%.

Fig. 7
Fig. 7

2D measurements of the lifetime distribution. (a) Focus mode image of a 2-D object consisting of alternating squares with fluorescence lifetimes of ∼1 and ∼1.7 ns, respectively. The measurements were performed with a Schott GG 455 filter in front of the input photocathode of the streak camera. (b) Resulting lifetime distribution obtained by application of the SAM to streak and focus images. The streak and the focus images were averaged over 11 rows and 24 columns, and the resulting distribution of the lifetimes was averaged over 24 pixels. Measurements were also done with another filter, a Schott GG 495. The corresponding focus mode image (c), obtained at 300 accumulations, has a structure complementary to the previous focus mode image (a) because of the difference in emission wavelengths of the two types of paper. However, the resulting 2-D lifetime distribution (d) is of the same kind as that shown in (b).

Tables (1)

Tables Icon

Table 1 Sensitivity to Noise of the Retrieved Lifetime in Various Domains of λc a

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I fl t = - t   cNAI l s exp - λ eff t - s d s ,
I fl t = cNAI l 0 exp - λ eff t .
Ī fl 0   I fl t d t = 1 λ eff   I fl 0 ,
I s i = j = 1 i   I 0 sj exp - i - j λ j v ,
I f i = 0   I 0 s i exp - λ i x v d x I 0 s i = I f i λ i v
λ i = v I f i I s i - j = 1 i - 1 I f j λ j v exp - i - j λ j v ,     i > 1 , λ 1 = I s 1 v I f 1 .
I 0 s i = I f i 1 - exp - λ i v 1 + w b exp λ i 2 v ,
I 0 s i = I f i 1 - exp - λ i v ,     w / b     1 .
λ i = - v   ln 1 - 1 I f i I s i - j = 1 i - 1   I f j 1 - exp - λ j v × exp - i - j λ j v ,   i > 1 . λ 1 = - v   ln 1 - I s 1 I f 1 .
I f i ,   j = 1 λ i ,   j   AN i ,   j I l i ,   j k i ,   j ,
N i ,   j     I f i ,   j λ i i ,   j
λ i = λ c 1 + B   cos 2 π nel ν p i ,

Metrics