Abstract

We investigate the performance of separate absorption multiplication InGaAs/InP avalanche photodiodes as single-photon detectors for 1.3- and 1.55-μm wavelengths. First we study afterpulses and choose experimental conditions to limit this effect. Then we compare the InGaAs/InP detector with a germanium avalanche photodiode; the former shows a lower dark-count rate. The effect of operating temperature is studied for both wavelengths. At 173 K and with a dark-count probability per gate of 10-4, detection efficiencies of 16% for 1.3 μm and 7% for 1.55 μm are obtained. Finally, a timing resolution of less than 200 ps is demonstrated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
    [CrossRef]
  2. B. K. Garside, R. E. Park, “A photon counting optical time domain reflectometer for distributed sensing applications,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 89–97 (1990).
    [CrossRef]
  3. R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, C. Simmons, “Quantum cryptography over underground optical fibers,” Lect. Notes Comput. Sci. 1109, 329–342 (1996).
    [CrossRef]
  4. H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1997).
    [CrossRef]
  5. P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, P. D. Townsend, “Photon counting with passively quenched germanium avalanche,” Appl. Opt. 33, 6895–6901 (1994).
    [CrossRef] [PubMed]
  6. A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performances of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994).
    [CrossRef] [PubMed]
  7. A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performances of commercially available InGaAs/InP detectors,” Appl. Opt. 35, 2986–2996 (1996).
    [CrossRef] [PubMed]

1997 (1)

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1997).
[CrossRef]

1996 (2)

R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, C. Simmons, “Quantum cryptography over underground optical fibers,” Lect. Notes Comput. Sci. 1109, 329–342 (1996).
[CrossRef]

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performances of commercially available InGaAs/InP detectors,” Appl. Opt. 35, 2986–2996 (1996).
[CrossRef] [PubMed]

1994 (2)

1985 (1)

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Bethea, C. G.

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Campbell, J. C.

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Cova, S.

Francese, P. A.

Garside, B. K.

B. K. Garside, R. E. Park, “A photon counting optical time domain reflectometer for distributed sensing applications,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 89–97 (1990).
[CrossRef]

Gautier, J. D.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1997).
[CrossRef]

Gisin, N.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1997).
[CrossRef]

Hughes, R. J.

R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, C. Simmons, “Quantum cryptography over underground optical fibers,” Lect. Notes Comput. Sci. 1109, 329–342 (1996).
[CrossRef]

Huttner, B.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1997).
[CrossRef]

Knight, D.

Lacaita, A.

Levine, B. T.

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Luther, G. G.

R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, C. Simmons, “Quantum cryptography over underground optical fibers,” Lect. Notes Comput. Sci. 1109, 329–342 (1996).
[CrossRef]

Morgan, G. L.

R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, C. Simmons, “Quantum cryptography over underground optical fibers,” Lect. Notes Comput. Sci. 1109, 329–342 (1996).
[CrossRef]

Muller, A.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1997).
[CrossRef]

Owens, P. C. M.

Park, R. E.

B. K. Garside, R. E. Park, “A photon counting optical time domain reflectometer for distributed sensing applications,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 89–97 (1990).
[CrossRef]

Peterson, C. G.

R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, C. Simmons, “Quantum cryptography over underground optical fibers,” Lect. Notes Comput. Sci. 1109, 329–342 (1996).
[CrossRef]

Rarity, J. G.

Simmons, C.

R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, C. Simmons, “Quantum cryptography over underground optical fibers,” Lect. Notes Comput. Sci. 1109, 329–342 (1996).
[CrossRef]

Tapster, P. R.

Tittel, W.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1997).
[CrossRef]

Townsend, P. D.

Zappa, F.

Zbinden, H.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1997).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Electron. Lett. (1)

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1997).
[CrossRef]

Lect. Notes Comput. Sci. (1)

R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, C. Simmons, “Quantum cryptography over underground optical fibers,” Lect. Notes Comput. Sci. 1109, 329–342 (1996).
[CrossRef]

Other (1)

B. K. Garside, R. E. Park, “A photon counting optical time domain reflectometer for distributed sensing applications,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 89–97 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Dark-count probability per gate pulse at 1.3 μm and 77 K versus quantum detection efficiency for seven Fujitsu FPD5W1KS InGaAs/InP APD’s.

Fig. 3
Fig. 3

Time delay with afterpulse probability equal to 0.1% and to 1% as a function of temperature (voltage above breakdown, ΔV = 2.45 V).

Fig. 4
Fig. 4

Dark-count probability per gate pulse (or coincidence pulse for passive quenching) at 1.3 μm and 77 K versus quantum detection efficiency for InGaAs/InP and Ge APD’s.

Fig. 5
Fig. 5

Dark-count probability per gate pulse at 1.3 μm and 123 K versus quantum detection efficiency for InGaAs/InP and Ge APD’s.

Fig. 6
Fig. 6

Quantum detection efficiency at 1.3 μm and constant dark-count probability P dc versus temperature for the InGaAs/InP APD.

Fig. 7
Fig. 7

Quantum detection efficiency at 1.55 μm and constant dark-count probability P dc versus temperature for the InGaAs/InP APD.

Fig. 8
Fig. 8

Width of the detector response to a 150-ps-long laser pulse versus gate voltage at 173 K (λ = 1.3 μm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NEP = h ν η 2 R 1 / 2 ,

Metrics