Abstract

We describe a method of imaging the intensity profiles of light in near-field lithographic experiments directly by using a sensitive photoresist. This technique was applied to a detailed study of the irradiance distribution in the optical near field with contact-mode photolithography carried out by use of elastomeric phase masks. The experimental patterns in the photoresist determined by scanning electron microscopy and atomic force microscopy were compared with the corresponding theoretical profiles of intensity calculated by use of a simple scalar analysis; the two correlate well. This comparison makes it possible to improve the theoretical models of irradiance distribution in the near field. Analysis of the images highlights issues in the experimental design, provides a means for the optimization of this technique, and extends its application to the successful fabrication of test structures with linewidths of ∼50 nm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Smith, “A review of submicron lithography,” Superlat. Microstruct. 2, 129–142 (1986).
    [CrossRef]
  2. H. I. Smith, N. Efremow, P. L. Kelley, “Photolithographic contact printing of 4000 Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
    [CrossRef]
  3. F. Cerrina, C. Marrian, “A path to nanolithography,” MRS Bull. 12, 56–61 (1996).
  4. J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
    [CrossRef]
  5. J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. (in press).
  6. B. J. Lin, “Optical methods for fine line lithography,” in Fine Line Lithography, R. Newman, ed. (Elsevier, North Holland, 1980), pp. 105–232.
    [CrossRef]
  7. B. J. Lin, “Near-field diffraction of a medium slit,” J. Opt. Soc. Am. 62, 977–981 (1972).
    [CrossRef]
  8. B. J. Lin, “Deep-UV conformable-contact photolithography for bubble circuits,” IBM J. Res. Dev. 20, 213–221 (1976).
    [CrossRef]
  9. S. Davy, M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
    [CrossRef]
  10. L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–147 (1981).
    [CrossRef]
  11. G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–453 (1974).
    [CrossRef]
  12. M. Spak, D. Mammato, S. Jain, D. Durham, “Mechanism and lithographic evaluation of image reversal in AZ 5214 photoresist,” presented at the Seventh International Technical Conference on Photopolymers, Ellenville, New York, 1985.
  13. M. Levenson, “Wavefront engineering for photolithography,” Phys. Today 7, 28–36 (1993).
    [CrossRef]
  14. J. C. Langston, G. T. Dao, “Extending optical lithography to 0.25 μm and below,” Solid State Technol. 3, 57–64 (1995).
  15. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
    [CrossRef]
  16. T. Tanaka, S. Uchino, N. Hasegawa, T. Yamanaka, T. Terasawa, S. Okazaki, “A novel optical lithography technique using the phase-shifter fringe,” Jpn. J. Appl. Phys. 30(5), 1131–1136 (1991).
    [CrossRef]
  17. P. Brock, M. D. Levenson, J. M. Savislan, J. R. Lyerla, J. C. Cheng, C. V. Podlogar, “Fabrication of grooved glass substrates by phase mask lithography,” J. Vac. Sci. Technol. B 9(6), 3155–3161 (1991).
    [CrossRef]
  18. A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2005 (1993).
    [CrossRef]
  19. M. V. Klein, Optics (John Wiley & Sons, New York, 1970).
  20. A. Reiser, H.-Y. Shih, T.-F. Yeh, J.-P. Huang, “Novolak-diazoquinone resists: the imaging systems of the computer chip,” Angew. Chem. Int. Ed. Engl. 35, 2428–2440 (1996).
    [CrossRef]
  21. J. W. Goodman, Introduction to Fourier Optics (Pergamon Press, New York, 1980).
  22. P. E. Dyer, R. J. Farley, R. Geidl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 323–334 (1995).
  23. E. Delamarche, H. Schmid, B. Michel, H. Biebuyck, “Stability of molded polydimethylsiloxane microstructures,” Adv. Mater. 9, 741–746 (1997).
    [CrossRef]

1997 (2)

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

E. Delamarche, H. Schmid, B. Michel, H. Biebuyck, “Stability of molded polydimethylsiloxane microstructures,” Adv. Mater. 9, 741–746 (1997).
[CrossRef]

1996 (3)

F. Cerrina, C. Marrian, “A path to nanolithography,” MRS Bull. 12, 56–61 (1996).

S. Davy, M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

A. Reiser, H.-Y. Shih, T.-F. Yeh, J.-P. Huang, “Novolak-diazoquinone resists: the imaging systems of the computer chip,” Angew. Chem. Int. Ed. Engl. 35, 2428–2440 (1996).
[CrossRef]

1995 (2)

P. E. Dyer, R. J. Farley, R. Geidl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 323–334 (1995).

J. C. Langston, G. T. Dao, “Extending optical lithography to 0.25 μm and below,” Solid State Technol. 3, 57–64 (1995).

1993 (3)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

M. Levenson, “Wavefront engineering for photolithography,” Phys. Today 7, 28–36 (1993).
[CrossRef]

A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2005 (1993).
[CrossRef]

1991 (2)

T. Tanaka, S. Uchino, N. Hasegawa, T. Yamanaka, T. Terasawa, S. Okazaki, “A novel optical lithography technique using the phase-shifter fringe,” Jpn. J. Appl. Phys. 30(5), 1131–1136 (1991).
[CrossRef]

P. Brock, M. D. Levenson, J. M. Savislan, J. R. Lyerla, J. C. Cheng, C. V. Podlogar, “Fabrication of grooved glass substrates by phase mask lithography,” J. Vac. Sci. Technol. B 9(6), 3155–3161 (1991).
[CrossRef]

1986 (1)

H. I. Smith, “A review of submicron lithography,” Superlat. Microstruct. 2, 129–142 (1986).
[CrossRef]

1981 (1)

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–147 (1981).
[CrossRef]

1976 (1)

B. J. Lin, “Deep-UV conformable-contact photolithography for bubble circuits,” IBM J. Res. Dev. 20, 213–221 (1976).
[CrossRef]

1974 (2)

G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–453 (1974).
[CrossRef]

H. I. Smith, N. Efremow, P. L. Kelley, “Photolithographic contact printing of 4000 Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
[CrossRef]

1972 (1)

B. J. Lin, “Near-field diffraction of a medium slit,” J. Opt. Soc. Am. 62, 977–981 (1972).
[CrossRef]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Biebuyck, H.

E. Delamarche, H. Schmid, B. Michel, H. Biebuyck, “Stability of molded polydimethylsiloxane microstructures,” Adv. Mater. 9, 741–746 (1997).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–453 (1974).
[CrossRef]

Brock, P.

P. Brock, M. D. Levenson, J. M. Savislan, J. R. Lyerla, J. C. Cheng, C. V. Podlogar, “Fabrication of grooved glass substrates by phase mask lithography,” J. Vac. Sci. Technol. B 9(6), 3155–3161 (1991).
[CrossRef]

Cerrina, F.

F. Cerrina, C. Marrian, “A path to nanolithography,” MRS Bull. 12, 56–61 (1996).

Cheng, J. C.

P. Brock, M. D. Levenson, J. M. Savislan, J. R. Lyerla, J. C. Cheng, C. V. Podlogar, “Fabrication of grooved glass substrates by phase mask lithography,” J. Vac. Sci. Technol. B 9(6), 3155–3161 (1991).
[CrossRef]

Dao, G. T.

J. C. Langston, G. T. Dao, “Extending optical lithography to 0.25 μm and below,” Solid State Technol. 3, 57–64 (1995).

Davy, S.

S. Davy, M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

Delamarche, E.

E. Delamarche, H. Schmid, B. Michel, H. Biebuyck, “Stability of molded polydimethylsiloxane microstructures,” Adv. Mater. 9, 741–746 (1997).
[CrossRef]

Durham, D.

M. Spak, D. Mammato, S. Jain, D. Durham, “Mechanism and lithographic evaluation of image reversal in AZ 5214 photoresist,” presented at the Seventh International Technical Conference on Photopolymers, Ellenville, New York, 1985.

Dyer, P. E.

P. E. Dyer, R. J. Farley, R. Geidl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 323–334 (1995).

Efremow, N.

H. I. Smith, N. Efremow, P. L. Kelley, “Photolithographic contact printing of 4000 Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
[CrossRef]

Farley, R. J.

P. E. Dyer, R. J. Farley, R. Geidl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 323–334 (1995).

Geidl, R.

P. E. Dyer, R. J. Farley, R. Geidl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 323–334 (1995).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Pergamon Press, New York, 1980).

Harris, S. E.

G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–453 (1974).
[CrossRef]

Hasegawa, N.

T. Tanaka, S. Uchino, N. Hasegawa, T. Yamanaka, T. Terasawa, S. Okazaki, “A novel optical lithography technique using the phase-shifter fringe,” Jpn. J. Appl. Phys. 30(5), 1131–1136 (1991).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Huang, J.-P.

A. Reiser, H.-Y. Shih, T.-F. Yeh, J.-P. Huang, “Novolak-diazoquinone resists: the imaging systems of the computer chip,” Angew. Chem. Int. Ed. Engl. 35, 2428–2440 (1996).
[CrossRef]

Jackman, R. J.

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. (in press).

Jain, S.

M. Spak, D. Mammato, S. Jain, D. Durham, “Mechanism and lithographic evaluation of image reversal in AZ 5214 photoresist,” presented at the Seventh International Technical Conference on Photopolymers, Ellenville, New York, 1985.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Kelley, P. L.

H. I. Smith, N. Efremow, P. L. Kelley, “Photolithographic contact printing of 4000 Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
[CrossRef]

Klein, M. V.

M. V. Klein, Optics (John Wiley & Sons, New York, 1970).

Kumar, A.

A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2005 (1993).
[CrossRef]

Langston, J. C.

J. C. Langston, G. T. Dao, “Extending optical lithography to 0.25 μm and below,” Solid State Technol. 3, 57–64 (1995).

Levenson, M.

M. Levenson, “Wavefront engineering for photolithography,” Phys. Today 7, 28–36 (1993).
[CrossRef]

Levenson, M. D.

P. Brock, M. D. Levenson, J. M. Savislan, J. R. Lyerla, J. C. Cheng, C. V. Podlogar, “Fabrication of grooved glass substrates by phase mask lithography,” J. Vac. Sci. Technol. B 9(6), 3155–3161 (1991).
[CrossRef]

Lin, B. J.

B. J. Lin, “Deep-UV conformable-contact photolithography for bubble circuits,” IBM J. Res. Dev. 20, 213–221 (1976).
[CrossRef]

B. J. Lin, “Near-field diffraction of a medium slit,” J. Opt. Soc. Am. 62, 977–981 (1972).
[CrossRef]

B. J. Lin, “Optical methods for fine line lithography,” in Fine Line Lithography, R. Newman, ed. (Elsevier, North Holland, 1980), pp. 105–232.
[CrossRef]

Lyerla, J. R.

P. Brock, M. D. Levenson, J. M. Savislan, J. R. Lyerla, J. C. Cheng, C. V. Podlogar, “Fabrication of grooved glass substrates by phase mask lithography,” J. Vac. Sci. Technol. B 9(6), 3155–3161 (1991).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Mammato, D.

M. Spak, D. Mammato, S. Jain, D. Durham, “Mechanism and lithographic evaluation of image reversal in AZ 5214 photoresist,” presented at the Seventh International Technical Conference on Photopolymers, Ellenville, New York, 1985.

Marrian, C.

F. Cerrina, C. Marrian, “A path to nanolithography,” MRS Bull. 12, 56–61 (1996).

Mashev, L.

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–147 (1981).
[CrossRef]

Michel, B.

E. Delamarche, H. Schmid, B. Michel, H. Biebuyck, “Stability of molded polydimethylsiloxane microstructures,” Adv. Mater. 9, 741–746 (1997).
[CrossRef]

Okazaki, S.

T. Tanaka, S. Uchino, N. Hasegawa, T. Yamanaka, T. Terasawa, S. Okazaki, “A novel optical lithography technique using the phase-shifter fringe,” Jpn. J. Appl. Phys. 30(5), 1131–1136 (1991).
[CrossRef]

Paul, K. E.

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. (in press).

Podlogar, C. V.

P. Brock, M. D. Levenson, J. M. Savislan, J. R. Lyerla, J. C. Cheng, C. V. Podlogar, “Fabrication of grooved glass substrates by phase mask lithography,” J. Vac. Sci. Technol. B 9(6), 3155–3161 (1991).
[CrossRef]

Reiser, A.

A. Reiser, H.-Y. Shih, T.-F. Yeh, J.-P. Huang, “Novolak-diazoquinone resists: the imaging systems of the computer chip,” Angew. Chem. Int. Ed. Engl. 35, 2428–2440 (1996).
[CrossRef]

Rogers, J. A.

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. (in press).

Savislan, J. M.

P. Brock, M. D. Levenson, J. M. Savislan, J. R. Lyerla, J. C. Cheng, C. V. Podlogar, “Fabrication of grooved glass substrates by phase mask lithography,” J. Vac. Sci. Technol. B 9(6), 3155–3161 (1991).
[CrossRef]

Schmid, H.

E. Delamarche, H. Schmid, B. Michel, H. Biebuyck, “Stability of molded polydimethylsiloxane microstructures,” Adv. Mater. 9, 741–746 (1997).
[CrossRef]

Shih, H.-Y.

A. Reiser, H.-Y. Shih, T.-F. Yeh, J.-P. Huang, “Novolak-diazoquinone resists: the imaging systems of the computer chip,” Angew. Chem. Int. Ed. Engl. 35, 2428–2440 (1996).
[CrossRef]

Smith, H. I.

H. I. Smith, “A review of submicron lithography,” Superlat. Microstruct. 2, 129–142 (1986).
[CrossRef]

H. I. Smith, N. Efremow, P. L. Kelley, “Photolithographic contact printing of 4000 Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
[CrossRef]

Spajer, M.

S. Davy, M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

Spak, M.

M. Spak, D. Mammato, S. Jain, D. Durham, “Mechanism and lithographic evaluation of image reversal in AZ 5214 photoresist,” presented at the Seventh International Technical Conference on Photopolymers, Ellenville, New York, 1985.

Tanaka, T.

T. Tanaka, S. Uchino, N. Hasegawa, T. Yamanaka, T. Terasawa, S. Okazaki, “A novel optical lithography technique using the phase-shifter fringe,” Jpn. J. Appl. Phys. 30(5), 1131–1136 (1991).
[CrossRef]

Terasawa, T.

T. Tanaka, S. Uchino, N. Hasegawa, T. Yamanaka, T. Terasawa, S. Okazaki, “A novel optical lithography technique using the phase-shifter fringe,” Jpn. J. Appl. Phys. 30(5), 1131–1136 (1991).
[CrossRef]

Tonchev, S.

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–147 (1981).
[CrossRef]

Uchino, S.

T. Tanaka, S. Uchino, N. Hasegawa, T. Yamanaka, T. Terasawa, S. Okazaki, “A novel optical lithography technique using the phase-shifter fringe,” Jpn. J. Appl. Phys. 30(5), 1131–1136 (1991).
[CrossRef]

Whitesides, G. M.

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2005 (1993).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. (in press).

Yamanaka, T.

T. Tanaka, S. Uchino, N. Hasegawa, T. Yamanaka, T. Terasawa, S. Okazaki, “A novel optical lithography technique using the phase-shifter fringe,” Jpn. J. Appl. Phys. 30(5), 1131–1136 (1991).
[CrossRef]

Yeh, T.-F.

A. Reiser, H.-Y. Shih, T.-F. Yeh, J.-P. Huang, “Novolak-diazoquinone resists: the imaging systems of the computer chip,” Angew. Chem. Int. Ed. Engl. 35, 2428–2440 (1996).
[CrossRef]

Young, J. F.

G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–453 (1974).
[CrossRef]

Adv. Mater. (1)

E. Delamarche, H. Schmid, B. Michel, H. Biebuyck, “Stability of molded polydimethylsiloxane microstructures,” Adv. Mater. 9, 741–746 (1997).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

A. Reiser, H.-Y. Shih, T.-F. Yeh, J.-P. Huang, “Novolak-diazoquinone resists: the imaging systems of the computer chip,” Angew. Chem. Int. Ed. Engl. 35, 2428–2440 (1996).
[CrossRef]

Appl. Phys. A (1)

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–147 (1981).
[CrossRef]

Appl. Phys. Lett. (5)

G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–453 (1974).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2005 (1993).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

S. Davy, M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

IBM J. Res. Dev. (1)

B. J. Lin, “Deep-UV conformable-contact photolithography for bubble circuits,” IBM J. Res. Dev. 20, 213–221 (1976).
[CrossRef]

J. Electrochem. Soc. (1)

H. I. Smith, N. Efremow, P. L. Kelley, “Photolithographic contact printing of 4000 Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

B. J. Lin, “Near-field diffraction of a medium slit,” J. Opt. Soc. Am. 62, 977–981 (1972).
[CrossRef]

J. Vac. Sci. Technol. B (1)

P. Brock, M. D. Levenson, J. M. Savislan, J. R. Lyerla, J. C. Cheng, C. V. Podlogar, “Fabrication of grooved glass substrates by phase mask lithography,” J. Vac. Sci. Technol. B 9(6), 3155–3161 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Tanaka, S. Uchino, N. Hasegawa, T. Yamanaka, T. Terasawa, S. Okazaki, “A novel optical lithography technique using the phase-shifter fringe,” Jpn. J. Appl. Phys. 30(5), 1131–1136 (1991).
[CrossRef]

MRS Bull. (1)

F. Cerrina, C. Marrian, “A path to nanolithography,” MRS Bull. 12, 56–61 (1996).

Opt. Commun. (1)

P. E. Dyer, R. J. Farley, R. Geidl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 323–334 (1995).

Phys. Today (1)

M. Levenson, “Wavefront engineering for photolithography,” Phys. Today 7, 28–36 (1993).
[CrossRef]

Solid State Technol. (1)

J. C. Langston, G. T. Dao, “Extending optical lithography to 0.25 μm and below,” Solid State Technol. 3, 57–64 (1995).

Superlat. Microstruct. (1)

H. I. Smith, “A review of submicron lithography,” Superlat. Microstruct. 2, 129–142 (1986).
[CrossRef]

Other (5)

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. (in press).

B. J. Lin, “Optical methods for fine line lithography,” in Fine Line Lithography, R. Newman, ed. (Elsevier, North Holland, 1980), pp. 105–232.
[CrossRef]

M. Spak, D. Mammato, S. Jain, D. Durham, “Mechanism and lithographic evaluation of image reversal in AZ 5214 photoresist,” presented at the Seventh International Technical Conference on Photopolymers, Ellenville, New York, 1985.

M. V. Klein, Optics (John Wiley & Sons, New York, 1970).

J. W. Goodman, Introduction to Fourier Optics (Pergamon Press, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic illustration of the processing of the AZ 5200 series photoresists with an amplitude mask in the (a) conventional and (b) image-reversal modes.

Fig. 2
Fig. 2

Depth of the relief in the photoresist processed in conventional and image-reversal modes as a function of the integrated dose of radiation.12 In the conventional mode the photoresist film is fully developed for energies above I 0 c and remains intact for energies below I 100 c . In the image-reversal mode the photoresist film is fully developed for energies below I 0 r and remains intact for energies above I 100 r .

Fig. 3
Fig. 3

Relation between an arbitrary intensity profile and corresponding patterns in the image-reversal photoresist as a function of exposure time. (a) Short exposure: when the entire profile of the intensity falls below the level of I 0. The photoresist film is fully developed. (b) Intermediate exposure: when most of the intensity falls into the interval between I 0 and I 100. The profile in the photoresist reflects the actual irradiation distribution in the near field. (c) Long exposure: when most of the intensity exceeds the I 100 level. In the overexposed regions 100% of the photoresist film remains intact irrespective of the actual irradiance distribution.

Fig. 4
Fig. 4

Steps for computing the near-field pattern of intensity by use of a simple scalar theory. (a) The geometry of the photomask and its optical properties define a transmission function. This function determines the influence of the mask on the phase and amplitude of the light passing through it. For the example illustrated here the mask shifts the phase of the light in a binary fashion. (b) Fourier transformation of the transmission function defines a far-field diffraction pattern. (The amplitude of the electric field is shown here.) The angular positions of diffracted orders in this pattern are determined by (i) the size of features on the mask and (ii) the wavelength of the light evaluated in the medium into which the diffracted light passes after it emerges from the mask. A cutoff filter (dashed white circle) that removes all the diffracted light that emerges from the mask at angles >90° is applied to the pattern of diffraction. (c) The filtered diffracted light is recombined by use of an inverse Fourier transform. The resulting pattern of intensity represents an approximation of the actual pattern in the near field of the mask; it neglects contributions from evanescent waves at the surface of the mask.

Fig. 5
Fig. 5

(a) Theoretical profile of the intensity calculated by use of a simple scalar analysis and (b) AFM height profile of the corresponding pattern recorded in the photoresist for the near-field photolithographic experiment with an elastomeric contact phase mask with a grating test pattern of 2-μm lines spaced by 2 μm.

Fig. 6
Fig. 6

Scanning electron micrographs of the profiles in the photoresist produced by a phase mask with a relief structure composed of raised cylinders. (a) Image-reversal mode. Diffraction information is recorded inside the circular regions that are in intimate contact with the photoresist. (b) Positive image. Traces of the photoresist film remaining outside the circles (noncontact area in the phase mask) imply that the photoresist accumulates a lower integrated irradiance in the noncontact regions than in the contact regions. Fully developed spots outside the circles (indicated by arrows) correspond to the increased irradiation owing to the interference of peaks in the near-field intensity profiles.

Fig. 7
Fig. 7

Theoretical profiles of light intensity corrected for sagging and reflective losses in the noncontact regions of the elastomeric phase mask.

Fig. 8
Fig. 8

Near-field irradiance distribution for grating test patterns with different periods p and linewidths w. (a) Scanning electron micrographs of the images of the field recorded in the photoresist. (b) Simulation of the profiles of intensity corrected for sagging and reflective losses at the noncontact regions. 1: p = 1600 nm, w = 750 nm. 2: p = 2100 nm, w = 1000 nm. 3: p = 3500 nm, w = 1250 nm. 4: p = 3100 nm, w = 1500 nm. 5: p = 3900 nm, w = 1900 nm.

Fig. 9
Fig. 9

(a) Scanning electron micrographs of the interference patterns recorded in the photoresist and (b) their theoretical counterparts. The relief structures in the PDMS masks were composed of raised rhombi (top), one-dimensional grating patterns, as in Figs. 3(a) and 5, exposed consecutively in two perpendicular directions (center) and elliptical wells (bottom).

Fig. 10
Fig. 10

Scanning electron micrographs of lines in the positive photoresist formed by near-field contact-mode photolithography with (a) a 5-mm-thick, soft elastomeric phase mask having a 500-nm depth of relief, as described previously,4,5 and (b)–(d), a 2-mm-thick, stiff elastomeric phase mask having a 300-nm depth of relief. The periodicity in the mask relief decreases from (b) to (d).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E x ,   y ,   z = 0 + = E x ,   y ,   z = 0 - τ x ,   y .

Metrics