Abstract

We describe a method of imaging the intensity profiles of light in near-field lithographic experiments directly by using a sensitive photoresist. This technique was applied to a detailed study of the irradiance distribution in the optical near field with contact-mode photolithography carried out by use of elastomeric phase masks. The experimental patterns in the photoresist determined by scanning electron microscopy and atomic force microscopy were compared with the corresponding theoretical profiles of intensity calculated by use of a simple scalar analysis; the two correlate well. This comparison makes it possible to improve the theoretical models of irradiance distribution in the near field. Analysis of the images highlights issues in the experimental design, provides a means for the optimization of this technique, and extends its application to the successful fabrication of test structures with linewidths of ∼50 nm.

© 1998 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal

Yongwoo Kim, Howon Jung, Seok Kim, Jinhee Jang, Jae Yong Lee, and Jae W. Hahn
Opt. Express 19(20) 19296-19309 (2011)

Experimental characterization of the transfer function for a Silver-dielectric superlens

Ciaran P. Moore and Richard J. Blaikie
Opt. Express 20(6) 6412-6420 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription