Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser-speckle angular-displacement sensor: theoretical and experimental study

Not Accessible

Your library or personal account may give you access

Abstract

A novel, to our knowledge, method for the measurement of angular displacement for arbitrarily shaped objects is presented in which the angular displacement is perpendicular to the optical axis. The method is based on Fourier-transforming the scattered field from a single laser beam that illuminates the target. The angular distribution of the light field at the target is linearly mapped on a linear image sensor placed in the Fourier plane. Measuring this displacement facilitates the determination of the angular displacement of the target. It is demonstrated both theoretically and experimentally that the angular-displacement sensor is insensitive to object shape and target distance if the linear image sensor is placed in the Fourier plane. A straightforward procedure for positioning the image sensor in the Fourier plane is presented. Any transverse or longitudinal movement of the target will give rise to partial speckle decorrelation, but it will not affect the angular measurement. Furthermore, any change in the illuminating wavelength will not affect the angular measurements. Theoretically and experimentally it is shown that the method has a resolution of 0.3 mdeg (≈5 μrad) for small angular displacements, and methods for further improvement in resolution is discussed. No special surface treatment is required for surfaces giving rise to fully developed speckle. The effect of partially developed speckle is considered both theoretically and experimentally.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Speckle dynamics from in-plane rotating diffuse objects in complex ABCD optical systems

H. T. Yura, B. Rose, and S. G. Hanson
J. Opt. Soc. Am. A 15(5) 1167-1173 (1998)

Angular displacement and deformation analyses using a speckle-based wavefront sensor

Percival F. Almoro, Giancarlo Pedrini, Arun Anand, Wolfgang Osten, and Steen G. Hanson
Appl. Opt. 48(5) 932-940 (2009)

Angular displacement fiber-optic sensor: theoretical and experimental study

Nathalie Mancier, Ayoub Chakari, Patrick Meyrueis, and Michel Clément
Appl. Opt. 34(28) 6489-6495 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved